Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, United States.
Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States.
Am J Physiol Renal Physiol. 2024 Sep 1;327(3):F351-F362. doi: 10.1152/ajprenal.00050.2024. Epub 2024 Jul 4.
Chronic kidney disease mineral bone disorder (CKD-MBD) is a complex clinical syndrome responsible for the accelerated cardiovascular mortality seen in individuals afflicted with CKD. Current approaches to therapy have failed to improve clinical outcomes adequately, likely due to targeting surrogate biochemical parameters as articulated by the guideline developer, Kidney Disease: Improving Global Outcomes (KDIGO). We hypothesized that using a Systems Biology Approach combining machine learning with mathematical modeling, we could test a novel approach to therapy targeting the abnormal movement of mineral out of bone and into soft tissue that is characteristic of CKD-MBD. The mathematical model describes the movement of calcium and phosphate between body compartments in response to standard therapeutic agents. The machine-learning technique we applied is reinforcement learning (RL). We compared calcium, phosphate, parathyroid hormone (PTH), and mineral movement out of bone and into soft tissue under four scenarios: standard approach (KDIGO), achievement of KDIGO guidelines using RL (RLKDIGO), targeting abnormal mineral flux (RLFLUX), and combining achievement of KDIGO guidelines with minimization of abnormal mineral flux (RLKDIGOFLUX). We demonstrate through simulations that explicitly targeting abnormal mineral flux significantly decreases abnormal mineral movement compared with standard approach while achieving acceptable biochemical outcomes. These investigations highlight the limitations of current therapeutic targets, primarily secondary hyperparathyroidism, and emphasize the central role of deranged phosphate homeostasis in the genesis of the CKD-MBD syndrome. Artificial intelligence is a powerful tool for exploration of complex processes but application to clinical syndromes is challenging. Using a mathematical model describing the movement of calcium and phosphate between body compartments combined with machine learning, we show the feasibility of testing alternative goals of therapy for Chronic Kidney Disease Mineral Bone Disorder while maintaining acceptable biochemical outcomes. These simulations demonstrate the potential for using this platform to generate and test hypotheses in silico rapidly, inexpensively, and safely.
慢性肾脏病矿物质和骨异常(CKD-MBD)是一种复杂的临床综合征,导致 CKD 患者心血管死亡率加速。目前的治疗方法未能充分改善临床结局,这可能是由于治疗目标是指南制定者(肾脏病:改善全球结局,KDIGO)提出的替代生化参数。我们假设,使用结合机器学习和数学模型的系统生物学方法,我们可以测试一种针对 CKD-MBD 特征的矿物质从骨骼异常转移到软组织的新型治疗方法。该数学模型描述了钙和磷酸盐在身体隔室之间的运动,以响应标准治疗剂。我们应用的机器学习技术是强化学习(RL)。我们比较了在以下四种情况下钙、磷酸盐、甲状旁腺激素(PTH)和矿物质从骨骼转移到软组织的情况:标准方法(KDIGO)、使用 RL 实现 KDIGO 指南(RLKDIGO)、针对异常矿物质通量(RLFLUX)和结合实现 KDIGO 指南与最小化异常矿物质通量(RLKDIGOFLUX)。我们通过模拟表明,与标准方法相比,明确针对异常矿物质通量可显著减少异常矿物质运动,同时实现可接受的生化结果。这些研究强调了当前治疗目标的局限性,主要是继发甲状旁腺功能亢进症,并强调了磷酸盐稳态紊乱在 CKD-MBD 综合征发生中的核心作用。人工智能是探索复杂过程的有力工具,但将其应用于临床综合征具有挑战性。使用描述钙和磷酸盐在身体隔室之间运动的数学模型结合机器学习,我们展示了在维持可接受的生化结果的同时,测试慢性肾脏病矿物质和骨异常替代治疗目标的可行性。这些模拟表明,该平台具有在计算中快速、廉价和安全地生成和测试假设的潜力。