Tyloo Melvyn
Theoretical Division and Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, NM, United States.
Front Netw Physiol. 2024 Jun 19;4:1399352. doi: 10.3389/fnetp.2024.1399352. eCollection 2024.
Physiological networks are usually made of a large number of biological oscillators evolving on a multitude of different timescales. Phase oscillators are particularly useful in the modelling of the synchronization dynamics of such systems. If the coupling is strong enough compared to the heterogeneity of the internal parameters, synchronized states might emerge where phase oscillators start to behave coherently. Here, we focus on the case where synchronized oscillators are divided into a fast and a slow component so that the two subsets evolve on separated timescales. We assess the resilience of the slow component by, first, reducing the dynamics of the fast one using Mori-Zwanzig formalism. Second, we evaluate the variance of the phase deviations when the oscillators in the two components are subject to noise with possibly distinct correlation times. From the general expression for the variance, we consider specific network structures and show how the noise transmission between the fast and slow components is affected. Interestingly, we find that oscillators that are among the most robust when there is only a single timescale, might become the most vulnerable when the system undergoes a timescale separation. We also find that layered networks seem to be insensitive to such timescale separations.
生理网络通常由大量在众多不同时间尺度上演化的生物振荡器组成。相位振荡器在对此类系统的同步动力学建模中特别有用。如果与内部参数的异质性相比耦合足够强,可能会出现同步状态,此时相位振荡器开始协同行为。在这里,我们关注同步振荡器被分为快速和慢速分量的情况,以便两个子集在分离的时间尺度上演化。我们通过首先使用 Mori-Zwanzig 形式主义简化快速分量的动力学来评估慢速分量的弹性。其次,当两个分量中的振荡器受到可能具有不同相关时间的噪声影响时,我们评估相位偏差的方差。从方差的一般表达式出发,我们考虑特定的网络结构,并展示快速和慢速分量之间的噪声传输是如何受到影响的。有趣的是,我们发现当只有一个时间尺度时最稳健的振荡器,在系统经历时间尺度分离时可能会变得最脆弱。我们还发现分层网络似乎对这种时间尺度分离不敏感。