Suppr超能文献

人工、斑马鱼和人类神经网络的结构与功能。

Structure and function in artificial, zebrafish and human neural networks.

机构信息

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.

Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.

出版信息

Phys Life Rev. 2023 Jul;45:74-111. doi: 10.1016/j.plrev.2023.04.004. Epub 2023 Apr 25.

Abstract

Network science provides a set of tools for the characterization of the structure and functional behavior of complex systems. Yet a major problem is to quantify how the structural domain is related to the dynamical one. In other words, how the diversity of dynamical states of a system can be predicted from the static network structure? Or the reverse problem: starting from a set of signals derived from experimental recordings, how can one discover the network connections or the causal relations behind the observed dynamics? Despite the advances achieved over the last two decades, many challenges remain concerning the study of the structure-dynamics interplay of complex systems. In neuroscience, progress is typically constrained by the low spatio-temporal resolution of experiments and by the lack of a universal inferring framework for empirical systems. To address these issues, applications of network science and artificial intelligence to neural data have been rapidly growing. In this article, we review important recent applications of methods from those fields to the study of the interplay between structure and functional dynamics of human and zebrafish brain. We cover the selection of topological features for the characterization of brain networks, inference of functional connections, dynamical modeling, and close with applications to both the human and zebrafish brain. This review is intended to neuroscientists who want to become acquainted with techniques from network science, as well as to researchers from the latter field who are interested in exploring novel application scenarios in neuroscience.

摘要

网络科学为描述复杂系统的结构和功能行为提供了一套工具。然而,一个主要问题是量化结构域与动力域之间的关系。换句话说,如何从静态网络结构预测系统的动态状态多样性?或者反过来的问题:从从实验记录中得出的一组信号出发,如何发现观察到的动态背后的网络连接或因果关系?尽管在过去二十年中取得了进展,但关于复杂系统的结构-动力相互作用的研究仍存在许多挑战。在神经科学中,进展通常受到实验的低时空分辨率和缺乏用于经验系统的普遍推断框架的限制。为了解决这些问题,网络科学和人工智能在神经数据中的应用正在迅速发展。在本文中,我们回顾了这些领域的方法在研究人类和斑马鱼大脑的结构和功能动力学之间相互作用方面的重要应用。我们涵盖了拓扑特征的选择,用于大脑网络的特征描述、功能连接的推断、动态建模,并以人类和斑马鱼大脑的应用结束。本文旨在为希望了解网络科学技术的神经科学家,以及对探索神经科学中新颖应用场景感兴趣的后者领域的研究人员提供参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验