Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
School of Nursing, Southern Medical University, Guangzhou, Guangdong, China.
Neurourol Urodyn. 2024 Nov;43(8):2157-2168. doi: 10.1002/nau.25536. Epub 2024 Jul 4.
To investigate the risk factors for neurogenic lower urinary tract dysfunction (NLUTD) in patients with acute ischemic stroke (AIS), and develop an internally validated predictive nomogram. The study aims to offer insights for preventing AIS-NLUTD.
We conducted a retrospective study on AIS patients in a Shenzhen Hospital from June 2021 to February 2023, categorizing them into non-NLUTD and NLUTD groups. The bivariate analysis identified factors for AIS-NLUTD (p < 0.05), integrated into a least absolute shrinkage and selection operator (LASSO) regression model. Significant variables from LASSO were used in a multivariate logistic regression for the predictive model, resulting in a nomogram. Nomogram performance and clinical utility were evaluated through receiver operating characteristic curves, calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC). Internal validation used 1000 bootstrap resamplings.
A total of 373 participants were included in this study, with an NLUTD incidence rate of 17.7% (66/373). NIHSS score (OR = 1.254), pneumonia (OR = 6.631), GLU (OR = 1.240), HGB (OR = 0.970), and hCRP (OR = 1.021) were used to construct a predictive model for NLUTD in AIS patients. The model exhibited good performance (AUC = 0.899, calibration curve p = 0.953). Internal validation of the model demonstrated strong discrimination and calibration abilities (AUC = 0.898). Results from DCA and CIC curves indicated that the prediction model had high clinical utility.
We developed a predictive model for AIS-NLUTD and created a nomogram with strong predictive capabilities, assisting healthcare professionals in evaluating NLUTD risk among AIS patients and facilitating early intervention.
探讨急性缺血性脑卒中(AIS)患者神经源性下尿路功能障碍(NLUTD)的危险因素,并建立内部验证的预测列线图。本研究旨在为预防 AIS-NLUTD 提供见解。
我们对 2021 年 6 月至 2023 年 2 月在深圳市某医院就诊的 AIS 患者进行了回顾性研究,将其分为非 NLUTD 组和 NLUTD 组。采用双变量分析确定 AIS-NLUTD 的危险因素(p<0.05),并将其整合到最小绝对值收缩和选择算子(LASSO)回归模型中。LASSO 中的显著变量用于多变量逻辑回归预测模型,生成列线图。通过受试者工作特征曲线、校准曲线、决策曲线分析(DCA)和临床影响曲线(CIC)评估列线图的性能和临床实用性。内部验证采用 1000 次 bootstrap 重采样。
共纳入 373 例患者,NLUTD 发生率为 17.7%(66/373)。NIHSS 评分(OR=1.254)、肺炎(OR=6.631)、GLU(OR=1.240)、HGB(OR=0.970)和 hCRP(OR=1.021)用于构建 AIS 患者 NLUTD 的预测模型。该模型具有良好的性能(AUC=0.899,校准曲线 p=0.953)。模型的内部验证显示出较强的区分度和校准能力(AUC=0.898)。DCA 和 CIC 曲线的结果表明,该预测模型具有较高的临床实用性。
我们建立了 AIS-NLUTD 的预测模型,并创建了具有较强预测能力的列线图,有助于医疗保健专业人员评估 AIS 患者 NLUTD 风险,并促进早期干预。