Suppr超能文献

一种用于预测急性缺血性脑卒中患者尿路感染风险的新评分:基于列线图的回顾性队列研究。

A novel score for early prediction of urinary tract infection risk in patients with acute ischemic stroke: a nomogram-based retrospective cohort study.

机构信息

Department  of  Pharmacy, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou City, 310012, Zhejiang Province, China.

Department  of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.

出版信息

Sci Rep. 2024 May 10;14(1):10707. doi: 10.1038/s41598-024-61623-0.

Abstract

This study aimed to construct and externally validate a user-friendly nomogram-based scoring model for predicting the risk of urinary tract infections (UTIs) in patients with acute ischemic stroke (AIS). A retrospective real-world cohort study was conducted on 1748 consecutive hospitalized patients with AIS. Out of these patients, a total of 1132 participants were ultimately included in the final analysis, with 817 used for model construction and 315 utilized for external validation. Multivariate regression analysis was applied to develop the model. The discriminative capacity, calibration ability, and clinical effectiveness of the model were evaluated. The overall incidence of UTIs was 8.13% (92/1132), with Escherichia coli being the most prevalent causative pathogen in patients with AIS. After multivariable analysis, advanced age, female gender, National Institute of Health Stroke Scale (NIHSS) score ≥ 5, and use of urinary catheters were identified as independent risk factors for UTIs. A nomogram-based SUNA model was constructed using these four factors (Area under the receiver operating characteristic curve (AUC) = 0.810), which showed good discrimination (AUC = 0.788), calibration, and clinical utility in the external validation cohort. Based on four simple and readily available factors, we derived and externally validated a novel and user-friendly nomogram-based scoring model (SUNA score) to predict the risk of UTIs in patients with AIS. The model has a good predictive value and provides valuable information for timely intervention in patients with AIS to reduce the occurrence of UTIs.

摘要

本研究旨在构建并外部验证一种基于列线图的简便评分模型,以预测急性缺血性脑卒中(AIS)患者发生尿路感染(UTIs)的风险。本研究采用回顾性真实世界队列研究方法,纳入了 1748 例连续住院的 AIS 患者。最终,共有 1132 例患者纳入最终分析,其中 817 例用于模型构建,315 例用于外部验证。采用多变量回归分析来建立模型。评估模型的判别能力、校准能力和临床有效性。UTIs 的总体发生率为 8.13%(92/1132),AIS 患者中最常见的病原体是大肠埃希菌。多变量分析后,年龄较大、女性、美国国立卫生研究院卒中量表(NIHSS)评分≥5 分和使用导尿管被确定为 UTI 的独立危险因素。使用这四个因素构建了基于列线图的 SUNA 模型(AUC=0.810),该模型在外部验证队列中显示出良好的判别能力(AUC=0.788)、校准能力和临床实用性。基于四个简单且易于获得的因素,我们推导出并外部验证了一种新颖且易于使用的基于列线图的评分模型(SUNA 评分),以预测 AIS 患者发生 UTIs 的风险。该模型具有良好的预测价值,为 AIS 患者的及时干预提供了有价值的信息,以降低 UTIs 的发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验