Sherry B, Abeles R H
Biochemistry. 1985 May 21;24(11):2594-605. doi: 10.1021/bi00332a002.
Methanol oxidase isolated from Hansenula polymorpha contains two distinct flavin cofactors in approximately equal amounts. One has been identified as authentic FAD and the other as a modified form of FAD differing only in the ribityl portion of the ribityldiphosphoadenosine side chain. The significance of this finding is as yet unknown. Previous studies have shown that cyclopropanol irreversibly inactivates methanol oxidase [Mincey, T., Tayrien, G., Mildvan, A. S., & Abeles, R. H. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 7099-7101]. We have now established that inactivation is accompanied by covalent modification of the flavin cofactor. The stoichiometry of this reaction is 1 mol of cyclopropanol/mol of active flavin. The structure of the covalent adduct was determined by NMR, IR, and UV spectral studies to be an N5,C4a-cyclic 4a,5-dihydroflavin. Reduction of the covalent adduct with NaBH4 at pH 9.0 before removal from the enzyme converted it to the 1-(ribityldiphosphoadenosine)-substituted 4-(3-hydroxypropyl)-2,3-dioxoquinoxaline. Cyclopropyl ring cleavage accompanies inactivation, and covalent bond formation occurs between a methylene carbon of cyclopropanol and N5 of flavin. Methanol oxidase was also reconstituted with 5-deazaflavin adenine dinucleotide (dFAD). Reconstituted enzyme did not catalyze the oxidation of alcohols to the corresponding aldehydes, nor did reduced reconstituted enzyme catalyze the reverse reaction. Incubation of reconstituted enzyme with cyclopropanol resulted in an absorbance decrease at 399 nm, but no irreversible covalent modification of the deazaflavin cofactor. A reversible addition complex between cyclopropanol and dFAD is formed. The structure of that complex was not definitively established, but it is likely that it is formed through the addition of cyclopropoxide to C5 of dFAD. The failure of dFAD-reconstituted methanol oxidase to catalyze the oxidation of substrate, as well as the lack of reaction with cyclopropanol, supports a radical mechanism for alcohol oxidation and cyclopropanol inactivation. Methanol oxidase catalyzes the oxidation of cyclopropylcarbinol to the corresponding aldehyde. No ring-opened products were detected. The failure to form ring-opened products has been used as an argument against radical processes [MacInnes, I., Nonhebel, D. C., Orsculik, S. T., & Suckling, C. J. (1982) J. Chem. Soc., Chem. Commun., 121-122]. We present arguments against this interpretation.
从多形汉逊酵母中分离出的甲醇氧化酶含有两种数量大致相等的不同黄素辅因子。一种已被鉴定为真正的黄素腺嘌呤二核苷酸(FAD),另一种是FAD的修饰形式,仅在核糖基二磷酸腺苷侧链的核糖醇部分有所不同。这一发现的意义尚不清楚。先前的研究表明,环丙醇可使甲醇氧化酶不可逆地失活[明西,T.,泰里恩,G.,米尔德万,A. S.,& 阿贝莱斯,R. H.(1980年)《美国国家科学院院刊》77,7099 - 7101]。我们现在已经确定,失活伴随着黄素辅因子的共价修饰。该反应的化学计量比为1摩尔环丙醇/摩尔活性黄素。通过核磁共振(NMR)、红外光谱(IR)和紫外光谱研究确定共价加合物的结构为N5,C4a - 环化4a,5 - 二氢黄素。在从酶中去除之前,于pH 9.0用硼氢化钠(NaBH4)还原共价加合物,将其转化为1 - (核糖基二磷酸腺苷)取代的4 - (3 - 羟丙基) - 2,3 - 二氧代喹喔啉。环丙基环的断裂伴随着失活,并且环丙醇的一个亚甲基碳与黄素的N5之间形成共价键。甲醇氧化酶也用5 - 脱氮黄素腺嘌呤二核苷酸(dFAD)进行了重组。重组酶不催化醇氧化为相应的醛,还原的重组酶也不催化逆反应。将重组酶与环丙醇一起孵育导致在399 nm处吸光度降低,但脱氮黄素辅因子没有不可逆的共价修饰。环丙醇与dFAD形成了一种可逆的加成复合物。该复合物的结构尚未明确确定,但很可能是通过环丙醇盐加成到dFAD的C5上形成的。dFAD重组的甲醇氧化酶不能催化底物氧化以及与环丙醇缺乏反应,支持了醇氧化和环丙醇失活的自由基机制。甲醇氧化酶催化环丙基甲醇氧化为相应的醛。未检测到开环产物。未能形成开环产物被用作反对自由基过程的一个论据[麦金尼斯,I.,诺恩黑贝尔,D. C.,奥尔斯库利克,S. T.,& 萨克林,C. J.(1982年)《化学学会杂志,化学通讯》,121 - 122]。我们提出反对这种解释的论据。