Suppr超能文献

评估心血管疾病终生风险:是时候向前迈进了。

Assessment of Lifetime Risk for Cardiovascular Disease: Time to Move Forward.

机构信息

Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, 70 El. Venizelou, Kallithea, 176 76, Athens, Greece.

出版信息

Curr Cardiol Rev. 2024;20(6):e030724231561. doi: 10.2174/011573403X311031240703080650.

Abstract

Over the past decades, there has been a notable increase in the risk of Cardiovascular Disease (CVD), even among younger individuals. Policymakers and the health community have revised CVD prevention programs to include younger people in order to take these new circumstances into account. A variety of CVD risk assessment tools have been developed in the past years with the aim of identifying potential CVD candidates at the population level; however, they can hardly discriminate against younger individuals at high risk of CVD.Therefore, in addition to the traditional 10-year CVD risk assessment, lifetime CVD risk assessment has recently been recommended by the American Heart Association/American College of Cardiology and the European Society of Cardiology prevention guidelines, particularly for young individuals. Methodologically, the benefits of these lifetime prediction models are the incorporation of left truncation observed in survival curves and the risk of competing events which are not considered equivalent in the common survival analysis. Thus, lifetime risk data are easily understandable and can be utilized as a risk communication tool for Public Health surveillance. However, given the peculiarities behind these estimates, structural harmonization should be conducted in order to create a sex-, race-specific tool that is sensitive to accurately identifying individuals who are at high risk of CVD. In this review manuscript, we present the most commonly used lifetime CVD risk tools, elucidate several methodological and critical points, their limitations, and the rationale behind their integration into everyday clinical practice.

摘要

在过去的几十年中,心血管疾病(CVD)的风险显著增加,即使是在年轻人中也是如此。政策制定者和卫生界已经修订了 CVD 预防计划,将年轻人纳入其中,以考虑到这些新情况。过去几年来,已经开发了多种 CVD 风险评估工具,旨在在人群水平上识别潜在的 CVD 患者;然而,它们几乎无法区分处于 CVD 高风险的年轻人。因此,除了传统的 10 年 CVD 风险评估外,美国心脏协会/美国心脏病学会和欧洲心脏病学会预防指南最近还建议进行终生 CVD 风险评估,特别是对于年轻人。从方法论上讲,这些终生预测模型的优点是纳入了生存曲线中观察到的左截断和竞争事件的风险,而在常见的生存分析中,这些风险并不等同。因此,终生风险数据易于理解,可以用作公共卫生监测的风险沟通工具。然而,鉴于这些估计背后的特殊性,应该进行结构协调,以创建一种针对特定性别和种族的工具,该工具对准确识别 CVD 高风险个体具有敏感性。在本综述手稿中,我们介绍了最常用的终生 CVD 风险工具,阐明了几个方法学和关键点、它们的局限性以及将它们纳入日常临床实践的基本原理。

相似文献

1
Assessment of Lifetime Risk for Cardiovascular Disease: Time to Move Forward.
Curr Cardiol Rev. 2024;20(6):e030724231561. doi: 10.2174/011573403X311031240703080650.
4
External validation of the QLifetime cardiovascular risk prediction tool: population cohort study.
BMC Cardiovasc Disord. 2023 Apr 15;23(1):194. doi: 10.1186/s12872-023-03209-8.

本文引用的文献

3
Prediction of lifetime risk for cardiovascular disease, by risk factors level: the ATTICA epidemiological cohort study (2002-2022).
Ann Epidemiol. 2023 Nov;87:17-24. doi: 10.1016/j.annepidem.2023.09.010. Epub 2023 Oct 12.
4
Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality.
N Engl J Med. 2023 Oct 5;389(14):1273-1285. doi: 10.1056/NEJMoa2206916. Epub 2023 Aug 26.
7
The relevance of competing risk adjustment in cardiovascular risk prediction models for clinical practice.
Eur J Prev Cardiol. 2023 Nov 9;30(16):1741-1747. doi: 10.1093/eurjpc/zwad202.
8
Coronary Artery Disease Risk Prediction in Young Adults: How Can We Overcome the Dominant Effect of Age?
Curr Atheroscler Rep. 2023 Jun;25(6):257-265. doi: 10.1007/s11883-023-01106-1. Epub 2023 May 17.
9
External validation of the QLifetime cardiovascular risk prediction tool: population cohort study.
BMC Cardiovasc Disord. 2023 Apr 15;23(1):194. doi: 10.1186/s12872-023-03209-8.
10
Radiation dose and lifetime risk for radiation-induced cancer due to natural radioactivity in tap water from Jordan.
Radiat Environ Biophys. 2023 May;62(2):279-285. doi: 10.1007/s00411-023-01018-3. Epub 2023 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验