Suppr超能文献

更努力、更出色、更迅速、更强大:用于酶和蛋白质预测建模的大规模量子力学及量子力学/分子力学方法

Harder, better, faster, stronger: Large-scale QM and QM/MM for predictive modeling in enzymes and proteins.

作者信息

Vennelakanti Vyshnavi, Nazemi Azadeh, Mehmood Rimsha, Steeves Adam H, Kulik Heather J

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Curr Opin Struct Biol. 2022 Feb;72:9-17. doi: 10.1016/j.sbi.2021.07.004. Epub 2021 Aug 10.

Abstract

Computational prediction of enzyme mechanism and protein function requires accurate physics-based models and suitable sampling. We discuss recent advances in large-scale quantum mechanical (QM) modeling of biochemical systems that have reduced the cost of high-accuracy models. Tradeoffs between sampling and accuracy have motivated modeling with molecular mechanics (MM) in a multiscale QM/MM or iterative approach. Limitations to both conventional density-functional theory and classical MM force fields remain for describing noncovalent interactions in comparison to experiment or wavefunction theory. Because predictions of enzyme action (i.e. electrostatics), free energy barriers, and mechanisms are sensitive to the protocol and embedding method in QM/MM, convergence tests and systematic methods for quantifying QM-level interactions are a needed, active area of development.

摘要

酶机制和蛋白质功能的计算预测需要精确的基于物理的模型和合适的采样方法。我们讨论了生化系统大规模量子力学(QM)建模的最新进展,这些进展降低了高精度模型的成本。采样与准确性之间的权衡促使人们采用多尺度QM/MM或迭代方法中的分子力学(MM)进行建模。与实验或波函数理论相比,传统密度泛函理论和经典MM力场在描述非共价相互作用方面仍然存在局限性。由于酶作用(即静电作用)、自由能垒和机制的预测对QM/MM中的协议和嵌入方法敏感,因此收敛测试和量化QM水平相互作用的系统方法是一个需要积极发展的领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验