Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.
Department Pharmaceutical Microbiology at the Hans-Knöll- Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany.
Angew Chem Int Ed Engl. 2024 Oct 14;63(42):e202407425. doi: 10.1002/anie.202407425. Epub 2024 Sep 12.
Bioactive dimeric (pre-)anthraquinones are ubiquitous in nature and are found in bacteria, fungi, insects, and plants. Their biosynthesis via oxidative phenol coupling (OPC) is catalyzed by cytochrome P450 enzymes, peroxidases, or laccases. While the biocatalysis of OPC in molds (Ascomycota) is well-known, the respective enzymes in mushroom-forming fungi (Basidiomycota) are unknown. Here, we report on the biosynthesis of the atropisomers phlegmacin A and B of the mushroom Cortinarius odorifer. The biosynthesis of these unsymmetrically 7,10'-homo-coupled dihydroanthracenones was heterologously reconstituted in the mold Aspergillus niger. Methylation of the parental monomer atrochrysone to its 6-O-methyl ether torosachrysone by the O-methyltransferase CoOMT1 precedes the regioselective homocoupling to phlegmacin, catalyzed by the enzyme CoUPO1 annotated as an "unspecific peroxygenase" (UPO). Our results reveal an unprecedented UPO reaction, thereby expanding the biocatalytic portfolio of oxidative phenol coupling beyond the commonly reported enzymes. The results show that Basidiomycota use peroxygenases to selectively couple aryls independently of and convergently to any other group of organisms, emphasizing the central role of OPC in natural processes.
生物活性二聚体(前)蒽醌在自然界中无处不在,存在于细菌、真菌、昆虫和植物中。它们通过细胞色素 P450 酶、过氧化物酶或漆酶的氧化酚偶联(OPC)生物合成。虽然霉菌(子囊菌)中 OPC 的生物催化作用是众所周知的,但蘑菇形成真菌(担子菌)中的相应酶是未知的。在这里,我们报告了蘑菇 Cortinarius odorifer 中异构体 phlegmacin A 和 B 的生物合成。这些不对称的 7,10'-同偶联二氢蒽酮的生物合成是在霉菌 Aspergillus niger 中异源重建的。母体单体 atrochrysone 通过 O-甲基转移酶 CoOMT1 甲基化为其 6-O-甲基醚 torosachrysone,然后由 CoUPO1 酶(注释为“非特异性过氧化物酶”(UPO))催化区域选择性同偶联生成 phlegmacin。我们的结果揭示了一种前所未有的 UPO 反应,从而扩展了氧化酚偶联的生物催化组合,超出了通常报道的酶。结果表明,担子菌使用过氧化物酶独立于任何其他生物体组并与之趋同地选择性偶联芳基,强调了 OPC 在自然过程中的核心作用。