Wieder Carsten, Künzer Moritz, Wiechert Rainer, Seipp Kevin, Andresen Karsten, Stark Petra, Schüffler Anja, Opatz Till, Thines Eckhard
Institute of Molecular Physiology, Johannes Gutenberg-University, Hanns-Dieter-Huesch-Weg 17, D-55128 Mainz, Germany.
Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Mainz, Hanns-Dieter-Huesch-Weg 17, D-55128 Mainz, Germany.
Org Lett. 2025 Jan 31;27(4):1036-1041. doi: 10.1021/acs.orglett.4c04656. Epub 2025 Jan 22.
Bioactivity-guided isolation identified the main antifungal compounds produced by as the new polyhydroxy-polyketides acrophialocinol () and acrophialocin (). Their biosynthesis was elucidated by heterologous reconstitution in and involves an α-ketoglutarate-dependent dioxygenase-catalyzed α-hydroxylation, resulting in the formation of a tertiary alcohol that is indispensable for antifungal activity. Furthermore, self-resistance toward the polyhydroxy-polyketides is mediated by a conserved RTA1-like protein encoded in the biosynthetic gene cluster.
生物活性导向分离鉴定出由[具体生物]产生的主要抗真菌化合物为新型多羟基聚酮化合物顶头孢菌素醇(acrophialocinol)和顶头孢菌素(acrophialocin)。通过在[具体宿主]中的异源重组阐明了它们的生物合成过程,该过程涉及α-酮戊二酸依赖性双加氧酶催化的α-羟基化反应,从而形成了一种对抗真菌活性必不可少的叔醇。此外,对多羟基聚酮化合物的自身抗性由在[具体生物]生物合成基因簇中编码的保守类RTA1蛋白介导。