Suppr超能文献

反向网络扩散去除间接噪声,以更好地推断基因调控网络。

Reverse network diffusion to remove indirect noise for better inference of gene regulatory networks.

机构信息

School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China.

IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Bioinformatics. 2024 Jul 1;40(7). doi: 10.1093/bioinformatics/btae435.

Abstract

MOTIVATION

Gene regulatory networks (GRNs) are vital tools for delineating regulatory relationships between transcription factors and their target genes. The boom in computational biology and various biotechnologies has made inferring GRNs from multi-omics data a hot topic. However, when networks are constructed from gene expression data, they often suffer from false-positive problem due to the transitive effects of correlation. The presence of spurious noise edges obscures the real gene interactions, which makes downstream analyses, such as detecting gene function modules and predicting disease-related genes, difficult and inefficient. Therefore, there is an urgent and compelling need to develop network denoising methods to improve the accuracy of GRN inference.

RESULTS

In this study, we proposed a novel network denoising method named REverse Network Diffusion On Random walks (RENDOR). RENDOR is designed to enhance the accuracy of GRNs afflicted by indirect effects. RENDOR takes noisy networks as input, models higher-order indirect interactions between genes by transitive closure, eliminates false-positive effects using the inverse network diffusion method, and produces refined networks as output. We conducted a comparative assessment of GRN inference accuracy before and after denoising on simulated networks and real GRNs. Our results emphasized that the network derived from RENDOR more accurately and effectively captures gene interactions. This study demonstrates the significance of removing network indirect noise and highlights the effectiveness of the proposed method in enhancing the signal-to-noise ratio of noisy networks.

AVAILABILITY AND IMPLEMENTATION

The R package RENDOR is provided at https://github.com/Wu-Lab/RENDOR and other source code and data are available at https://github.com/Wu-Lab/RENDOR-reproduce.

摘要

动机

基因调控网络(GRNs)是描绘转录因子与其靶基因之间调控关系的重要工具。计算生物学和各种生物技术的蓬勃发展使得从多组学数据中推断 GRNs 成为一个热门话题。然而,当从基因表达数据构建网络时,由于相关性的传递效应,它们经常受到假阳性问题的困扰。虚假噪声边的存在掩盖了真实的基因相互作用,这使得下游分析(如检测基因功能模块和预测与疾病相关的基因)变得困难且效率低下。因此,迫切需要开发网络去噪方法来提高 GRN 推断的准确性。

结果

在这项研究中,我们提出了一种名为反向网络扩散随机游走(RENDOR)的新的网络去噪方法。RENDOR 旨在提高受间接效应影响的 GRNs 的准确性。RENDOR 以噪声网络为输入,通过传递闭包对基因之间的高阶间接相互作用进行建模,使用逆网络扩散方法消除假阳性效应,并生成输出的精细网络。我们在模拟网络和真实 GRNs 上对 GRN 推断准确性进行了去噪前后的比较评估。我们的结果强调了 RENDOR 得出的网络更准确有效地捕获基因相互作用。这项研究证明了去除网络间接噪声的重要性,并突出了所提出的方法在增强噪声网络的信噪比方面的有效性。

可用性和实现

RENDOR 的 R 包可在 https://github.com/Wu-Lab/RENDOR 上获得,其他代码和数据可在 https://github.com/Wu-Lab/RENDOR-reproduce 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd35/11236096/f596ca9f440a/btae435f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验