Luong Thi-My-Trang, Ho Nguyen-Tuong, Hwu Yuh-Ming, Lin Shyr-Yeu, Ho Jason Yen-Ping, Wang Ruey-Sheng, Lee Yi-Xuan, Tan Shun-Jen, Lee Yi-Rong, Huang Yung-Ling, Hsu Yi-Ching, Le Nguyen-Quoc-Khanh, Tzeng Chii-Ruey
International Master Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
AIBioMed Research Group, Taipei Medical University, Taipei, Taiwan.
J Assist Reprod Genet. 2024 Sep;41(9):2349-2358. doi: 10.1007/s10815-024-03178-7. Epub 2024 Jul 4.
To determine if an explainable artificial intelligence (XAI) model enhances the accuracy and transparency of predicting embryo ploidy status based on embryonic characteristics and clinical data.
This retrospective study utilized a dataset of 1908 blastocyst embryos. The dataset includes ploidy status, morphokinetic features, morphology grades, and 11 clinical variables. Six machine learning (ML) models including Random Forest (RF), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Support Vector Machine (SVM), AdaBoost (ADA), and Light Gradient-Boosting Machine (LGBM) were trained to predict ploidy status probabilities across three distinct datasets: high-grade embryos (HGE, n = 1107), low-grade embryos (LGE, n = 364), and all-grade embryos (AGE, n = 1471). The model's performance was interpreted using XAI, including SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) techniques.
The mean maternal age was 38.5 ± 3.85 years. The Random Forest (RF) model exhibited superior performance compared to the other five ML models, achieving an accuracy of 0.749 and an AUC of 0.808 for AGE. In the external test set, the RF model achieved an accuracy of 0.714 and an AUC of 0.750 (95% CI, 0.702-0.796). SHAP's feature impact analysis highlighted that maternal age, paternal age, time to blastocyst (tB), and day 5 morphology grade significantly impacted the predictive model. In addition, LIME offered specific case-ploidy prediction probabilities, revealing the model's assigned values for each variable within a finite range.
The model highlights the potential of using XAI algorithms to enhance ploidy prediction, optimize embryo selection as patient-centric consultation, and provides reliability and transparent insights into the decision-making process.
确定一个可解释的人工智能(XAI)模型是否能提高基于胚胎特征和临床数据预测胚胎倍性状态的准确性和透明度。
这项回顾性研究使用了一个包含1908个囊胚胚胎的数据集。该数据集包括倍性状态、形态动力学特征、形态学等级和11个临床变量。训练了六种机器学习(ML)模型,包括随机森林(RF)、线性判别分析(LDA)、逻辑回归(LR)、支持向量机(SVM)、AdaBoost(ADA)和轻梯度提升机(LGBM),以预测三个不同数据集的倍性状态概率:高等级胚胎(HGE,n = 1107)、低等级胚胎(LGE,n = 364)和所有等级胚胎(AGE,n = 1471)。使用XAI解释模型的性能,包括SHapley加性解释(SHAP)和局部可解释模型无关解释(LIME)技术。
平均产妇年龄为38.5±3.85岁。随机森林(RF)模型与其他五个ML模型相比表现出卓越性能,对于AGE,准确率达到0.749,曲线下面积(AUC)为0.808。在外部测试集中,RF模型的准确率为0.714,AUC为0.750(95%置信区间,0.702 - 0.796)。SHAP的特征影响分析突出显示,产妇年龄、父亲年龄、囊胚形成时间(tB)和第5天的形态学等级对预测模型有显著影响。此外,LIME提供了特定病例的倍性预测概率,揭示了模型在有限范围内为每个变量分配的值。
该模型突出了使用XAI算法提高倍性预测、优化胚胎选择作为以患者为中心的咨询的潜力,并为决策过程提供了可靠且透明的见解。