Programa Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Mexico City C.P. 03940, Mexico.
Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City C.P. 14080, Mexico.
Genetics. 2024 Aug 7;227(4). doi: 10.1093/genetics/iyae097.
Radiotherapy is a key treatment option for a wide variety of human tumors, employed either alone or alongside with other therapeutic interventions. Radiotherapy uses high-energy particles to destroy tumor cells, blocking their ability to divide and proliferate. The effectiveness of radiotherapy is due to genetic and epigenetic factors that determine how tumor cells respond to ionizing radiation. These factors contribute to the establishment of resistance to radiotherapy, which increases the risk of poor clinical prognosis of patients. Although the mechanisms by which tumor cells induce radioresistance are unclear, evidence points out several contributing factors including the overexpression of DNA repair systems, increased levels of reactive oxygen species, alterations in the tumor microenvironment, and enrichment of cancer stem cell populations. In this context, dysregulation of microRNAs or miRNAs, critical regulators of gene expression, may influence how tumors respond to radiation. There is increasing evidence that miRNAs may act as sensitizers or enhancers of radioresistance, regulating key processes such as the DNA damage response and the cell death signaling pathway. Furthermore, expression and activity of miRNAs have shown informative value in overcoming radiotherapy and long-term radiotoxicity, revealing their potential as biomarkers. In this review, we will discuss the molecular mechanisms associated with the response to radiotherapy and highlight the central role of miRNAs in regulating the molecular mechanisms responsible for cellular radioresistance. We will also review radio-miRs, radiotherapy-related miRNAs, either as sensitizers or enhancers of radioresistance that hold promise as biomarkers or pharmacological targets to sensitize radioresistant cells.
放射治疗是治疗多种人类肿瘤的重要选择,可单独使用或与其他治疗干预措施联合使用。放射治疗使用高能粒子来破坏肿瘤细胞,阻止其分裂和增殖的能力。放射治疗的有效性取决于决定肿瘤细胞对电离辐射反应的遗传和表观遗传因素。这些因素导致了对放射治疗的耐药性的建立,增加了患者临床预后不良的风险。尽管肿瘤细胞诱导放射抗性的机制尚不清楚,但有证据表明有几个促成因素,包括 DNA 修复系统的过度表达、活性氧水平的增加、肿瘤微环境的改变以及癌症干细胞群体的富集。在这种情况下,microRNAs 或 miRNAs 的失调,即基因表达的关键调节剂,可能会影响肿瘤对辐射的反应。越来越多的证据表明,miRNAs 可以作为放射抗性的增敏剂或增强剂,调节关键过程,如 DNA 损伤反应和细胞死亡信号通路。此外,miRNAs 的表达和活性在克服放射治疗和长期放射毒性方面显示出了有价值的信息,揭示了它们作为生物标志物的潜力。在这篇综述中,我们将讨论与放射治疗反应相关的分子机制,并强调 miRNAs 在调节负责细胞放射抗性的分子机制中的核心作用。我们还将回顾放射相关的 miRNAs,它们作为放射抗性的增敏剂或增强剂,作为生物标志物或药物靶点具有潜力,可以使放射抗性细胞敏感。
Genetics. 2024-8-7
Tumour Biol. 2017-3
Mol Cancer Res. 2014-12
J Cancer Res Clin Oncol. 2018-7-3
Cell Biochem Biophys. 2024-9
Crit Rev Oncol Hematol. 2017-1
Theranostics. 2017-7-23
Cell Oncol (Dordr). 2024-6
Epigenomes. 2025-8-8
Clin Exp Metastasis. 2025-8-13
Int J Mol Sci. 2025-7-2
Noncoding RNA Res. 2025-5-23
Adv Clin Exp Med. 2024-3
Mol Cancer. 2023-6-15
Cell Death Discov. 2023-2-2
Immunother Adv. 2021-5-13
Signal Transduct Target Ther. 2022-7-29