文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

内含子内切酶促进了同时感染的病毒之间的干扰竞争。

An intron endonuclease facilitates interference competition between coinfecting viruses.

机构信息

Department of Molecular Biology, University of California, San Diego, La Jolla, CA.

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA.

出版信息

Science. 2024 Jul 5;385(6704):105-112. doi: 10.1126/science.adl1356. Epub 2024 Jul 4.


DOI:10.1126/science.adl1356
PMID:38963841
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11620839/
Abstract

Introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. In this work, we studied intron-encoded homing endonuclease gp210 in bacteriophage ΦPA3 and found that it contributes to viral competition by interfering with the replication of a coinfecting phage, ΦKZ. We show that gp210 targets a specific sequence in ΦKZ, which prevents the assembly of progeny viruses. This work demonstrates how a homing endonuclease can be deployed in interference competition among viruses and provide a relative fitness advantage. Given the ubiquity of homing endonucleases, this selective advantage likely has widespread evolutionary implications in diverse plasmid and viral competition as well as virus-host interactions.

摘要

内含归巢内切酶的内含子在自然界中广泛存在,长期以来一直被认为是对宿主生物体没有任何益处的自私元件。这些遗传元件在病毒中很常见,但它们是否赋予了选择优势尚不清楚。在这项工作中,我们研究了噬菌体ΦPA3 中的内含子编码的归巢内切酶 gp210,并发现它通过干扰共感染噬菌体 ΦKZ 的复制,有助于病毒竞争。我们表明,gp210 靶向 ΦKZ 中的特定序列,从而阻止了子代病毒的组装。这项工作展示了归巢内切酶如何在病毒之间的干扰竞争中发挥作用,并提供相对的适应度优势。鉴于归巢内切酶的普遍性,这种选择优势可能在质粒和病毒竞争以及病毒-宿主相互作用等多种情况下具有广泛的进化意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1f/11620839/088406f4247f/nihms-2034457-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1f/11620839/e472a267ea02/nihms-2034457-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1f/11620839/b23fba62b1cd/nihms-2034457-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1f/11620839/8f28e7b9cb31/nihms-2034457-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1f/11620839/088406f4247f/nihms-2034457-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1f/11620839/e472a267ea02/nihms-2034457-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1f/11620839/b23fba62b1cd/nihms-2034457-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1f/11620839/8f28e7b9cb31/nihms-2034457-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1f/11620839/088406f4247f/nihms-2034457-f0004.jpg

相似文献

[1]
An intron endonuclease facilitates interference competition between coinfecting viruses.

Science. 2024-7-5

[2]
A mobile intron facilitates interference competition between co-infecting viruses.

bioRxiv. 2023-9-30

[3]
The genome of bacteriophage phiKZ of Pseudomonas aeruginosa.

J Mol Biol. 2002-3-15

[4]
Genome comparison of Pseudomonas aeruginosa large phages.

J Mol Biol. 2005-12-2

[5]
The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages.

Cell Rep. 2017-8-15

[6]
Phage T4 endonuclease SegD that is similar to group I intron endonucleases does not initiate homing of its own gene.

Virology. 2018-2

[7]
Mobile DNA elements in T4 and related phages.

Virol J. 2010-10-28

[8]
Three novel Pseudomonas phages isolated from composting provide insights into the evolution and diversity of tailed phages.

BMC Genomics. 2017-5-4

[9]
Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements.

BMC Evol Biol. 2006-11-13

[10]
Structure of the Bacteriophage PhiKZ Non-virion RNA Polymerase Transcribing from its Promoter p119L.

J Mol Biol. 2024-9-15

引用本文的文献

[1]
Programmable antisense oligomers for phage functional genomics.

Nature. 2025-9-10

[2]
Phage Therapy for Urinary Tract Infections: Progress and Challenges Ahead.

Int Urogynecol J. 2025-5-13

[3]
Cryptic infection of a giant virus in a unicellular green alga.

Science. 2025-5-15

[4]
Phage-phage competition and biofilms affect interactions between two virulent bacteriophages and Pseudomonas aeruginosa.

ISME J. 2025-1-2

[5]
Advancing antibiotic discovery with bacterial cytological profiling: a high-throughput solution to antimicrobial resistance.

Front Microbiol. 2025-2-13

[6]
Latent infection of an active giant endogenous virus in a unicellular green alga.

bioRxiv. 2024-9-3

[7]
The intricate organizational strategy of nucleus-forming phages.

Curr Opin Microbiol. 2024-6

本文引用的文献

[1]
Type IV-A3 CRISPR-Cas systems drive inter-plasmid conflicts by acquiring spacers in trans.

Cell Host Microbe. 2024-6-12

[2]
An essential and highly selective protein import pathway encoded by nucleus-forming phage.

Proc Natl Acad Sci U S A. 2024-5-7

[3]
Identifying the core genome of the nucleus-forming bacteriophage family and characterization of Erwinia phage RAY.

Cell Rep. 2023-5-30

[4]
High-resolution reconstruction of a Jumbo-bacteriophage infecting capsulated bacteria using hyperbranched tail fibers.

Nat Commun. 2022-11-24

[5]
Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing.

Nat Microbiol. 2022-12

[6]
Spatially Segregated Transmission of Co-Occluded Baculoviruses Limits Virus-Virus Interactions Mediated by Cellular Coinfection during Primary Infection.

Viruses. 2022-7-31

[7]
Architecture and self-assembly of the jumbo bacteriophage nuclear shell.

Nature. 2022-8

[8]
ColabFold: making protein folding accessible to all.

Nat Methods. 2022-6

[9]
Subcellular organization of viral particles during maturation of nucleus-forming jumbo phage.

Sci Adv. 2022-5-6

[10]
Genic Selection Within Prokaryotic Pangenomes.

Genome Biol Evol. 2021-11-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索