Ma Guoqiang, Yuan Wentao, Li Xiaotong, Bi Tongqiang, Niu Linhuan, Wang Yue, Liu Mengyu, Wang Yuanyuan, Shen Zhaoxi, Zhang Ning
College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China.
Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China.
Adv Mater. 2024 Aug;36(35):e2408287. doi: 10.1002/adma.202408287. Epub 2024 Jul 5.
Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed. Taking the 1-butyl-3-methylimidazolium cation (Bmim) as a paradigm additive, the as-prepared Zn film ((002)-Zn) manifests a compact structure and a highly (002) texture without containing (100) signal. Mechanistic studies reveal that Bmim featuring oriented adsorption on the Zn-(002) plane can reduce the growth rate of (002) plane to render the final exposure of (002) texture, and homogenize Zn nucleation and suppress H evolution to enable the compact electrodeposition. In addition, the formulated Bmim-containing ZnSO electrolyte effectively sustains the (002) texture even under deep cycling conditions. Consequently, the combination of (002) texture and Bmim-containing electrolyte endows the (002)-Zn electrode with superior cycling stability over 350 h under 20 mAh cm with 72.6% depth-of-discharge, and assures the stable operation of full Zn batteries with both coin-type and pouch-type configurations, significantly outperforming the (002)-Zn and commercial Zn-based batteries in Bmim-free electrolytes.
操控锌(Zn)金属的晶体取向以暴露出更多的(002)平面,有望在水性电解质中稳定锌负极。然而,在高度(002)织构化的锌金属的非外延电沉积以及在深度循环条件下维持(002)织构方面仍存在挑战。在此,开发了一种新颖的有机咪唑阳离子辅助的非外延电沉积策略,以使电沉积的锌金属具有织构。以1-丁基-3-甲基咪唑阳离子(Bmim)作为典型添加剂,所制备的锌膜((002)-Zn)呈现出致密结构和高度的(002)织构,且不含(100)信号。机理研究表明,Bmim在Zn-(002)平面上具有定向吸附作用,可降低(002)平面的生长速率,从而使(002)织构最终得以暴露,并使锌成核均匀化且抑制析氢,以实现致密电沉积。此外,所配制的含Bmim的ZnSO电解质即使在深度循环条件下也能有效维持(002)织构。因此,(002)织构与含Bmim的电解质相结合,使(002)-Zn电极在20 mAh cm、72.6%放电深度下超过350 h具有卓越的循环稳定性,并确保了硬币型和软包型全锌电池的稳定运行,在不含Bmim的电解质中,其性能明显优于(002)-Zn和商用锌基电池。