Suppr超能文献

微生物驱动的铁循环促进了添加生物炭土壤中有机碳的积累。

Microbially Driven Iron Cycling Facilitates Organic Carbon Accrual in Decadal Biochar-Amended Soil.

机构信息

Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.

出版信息

Environ Sci Technol. 2024 Jul 16;58(28):12430-12440. doi: 10.1021/acs.est.3c09003. Epub 2024 Jul 5.

Abstract

Soil organic carbon (SOC) is pivotal for both agricultural activities and climate change mitigation, and biochar stands as a promising tool for bolstering SOC and curtailing soil carbon dioxide (CO) emissions. However, the involvement of biochar in SOC dynamics and the underlying interactions among biochar, soil microbes, iron minerals, and fresh organic matter (FOM, such as plant debris) remain largely unknown, especially in agricultural soils after long-term biochar amendment. We therefore introduced FOM to soils with and without a decade-long history of biochar amendment, performed soil microcosm incubations, and evaluated carbon and iron dynamics as well as microbial properties. Biochar amendment resulted in 2-fold SOC accrual over a decade and attenuated FOM-induced CO emissions by approximately 11% during a 56-day incubation through diverse pathways. Notably, biochar facilitated microbially driven iron reduction and subsequent Fenton-like reactions, potentially having enhanced microbial extracellular electron transfer and the carbon use efficiency in the long run. Throughout iron cycling processes, physical protection by minerals could contribute to both microbial carbon accumulation and plant debris preservation, alongside direct adsorption and occlusion of SOC by biochar particles. Furthermore, soil slurry experiments, with sterilization and ferrous iron stimulation controls, confirmed the role of microbes in hydroxyl radical generation and biotic carbon sequestration in biochar-amended soils. Overall, our study sheds light on the intricate biotic and abiotic mechanisms governing carbon dynamics in long-term biochar-amended upland soils.

摘要

土壤有机碳 (SOC) 对农业活动和气候变化缓解至关重要,而生物炭作为增强 SOC 和减少土壤二氧化碳 (CO) 排放的有前途的工具备受关注。然而,生物炭在 SOC 动态中的作用以及生物炭、土壤微生物、铁矿物和新鲜有机物质 (如植物残体) 之间的相互作用在很大程度上仍不清楚,特别是在长期生物炭添加后的农业土壤中。因此,我们将新鲜有机物质引入具有和不具有长达十年生物炭添加历史的土壤中,进行土壤微宇宙培养,并评估碳和铁动态以及微生物特性。生物炭添加在十年内导致 SOC 增加了两倍,并通过多种途径在 56 天的培养过程中减少了约 11%的新鲜有机物质诱导的 CO 排放。值得注意的是,生物炭促进了微生物驱动的铁还原和随后的芬顿样反应,这可能从长远来看增强了微生物的胞外电子转移和碳利用效率。在整个铁循环过程中,矿物的物理保护可能有助于微生物的碳积累和植物残体的保存,同时生物炭颗粒直接吸附和包裹 SOC。此外,带有灭菌和二价铁刺激控制的土壤泥浆实验证实了微生物在生物炭添加土壤中生成羟基自由基和生物固碳中的作用。总的来说,我们的研究揭示了长期生物炭添加的旱地土壤中控制碳动态的复杂生物和非生物机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验