Barzon Giacomo, Artime Oriol, Suweis Samir, Domenico Manlio De
Padova Neuroscience Center, University of Padua, Padova 35131, Italy.
Complex Human Behaviour Lab, Fondazione Bruno Kessler, Povo 38123, Italy.
Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2317608121. doi: 10.1073/pnas.2317608121. Epub 2024 Jul 5.
Complex systems are characterized by emergent patterns created by the nontrivial interplay between dynamical processes and the networks of interactions on which these processes unfold. Topological or dynamical descriptors alone are not enough to fully embrace this interplay in all its complexity, and many times one has to resort to dynamics-specific approaches that limit a comprehension of general principles. To address this challenge, we employ a metric-that we name Jacobian distance-which captures the spatiotemporal spreading of perturbations, enabling us to uncover the latent geometry inherent in network-driven processes. We compute the Jacobian distance for a broad set of nonlinear dynamical models on synthetic and real-world networks of high interest for applications from biological to ecological and social contexts. We show, analytically and computationally, that the process-driven latent geometry of a complex network is sensitive to both the specific features of the dynamics and the topological properties of the network. This translates into potential mismatches between the functional and the topological mesoscale organization, which we explain by means of the spectrum of the Jacobian matrix. Finally, we demonstrate that the Jacobian distance offers a clear advantage with respect to traditional methods when studying human brain networks. In particular, we show that it outperforms classical network communication models in explaining functional communities from structural data, therefore highlighting its potential in linking structure and function in the brain.
复杂系统的特征在于,由动态过程与这些过程所展开的相互作用网络之间的非平凡相互作用所产生的涌现模式。仅靠拓扑或动态描述符不足以完全涵盖这种相互作用的所有复杂性,而且很多时候人们不得不诉诸特定于动力学的方法,这限制了对一般原理的理解。为应对这一挑战,我们采用了一种度量——我们称之为雅可比距离——它捕捉扰动的时空传播,使我们能够揭示网络驱动过程中固有的潜在几何结构。我们针对从生物到生态和社会背景等应用中高度关注的合成网络和真实世界网络上的广泛非线性动力学模型计算雅可比距离。我们通过分析和计算表明,复杂网络的过程驱动潜在几何结构对动力学的特定特征和网络的拓扑属性都很敏感。这转化为功能和拓扑中尺度组织之间可能存在的不匹配,我们通过雅可比矩阵的谱来解释这一点。最后,我们证明,在研究人类大脑网络时,雅可比距离相对于传统方法具有明显优势。特别是,我们表明它在从结构数据解释功能群落方面优于经典网络通信模型,因此突出了其在连接大脑结构和功能方面的潜力。