Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
Nat Rev Neurosci. 2023 Sep;24(9):557-574. doi: 10.1038/s41583-023-00718-5. Epub 2023 Jul 12.
Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.
理解神经系统中的通讯和信息处理是神经科学的一个核心目标。在过去的二十年中,连接组学和网络神经科学的进展为研究复杂脑网络中的多突触通讯开辟了新的途径。最近的工作对连接组信号传递仅通过最短路径发生的主要假设提出了质疑,导致出现了大量替代的网络通讯模型。这篇综述调查了脑网络通讯模型的最新进展。我们首先通过将图论的数学与神经信号传递的生物学方面(如传输延迟和代谢成本)之间建立概念联系来展开讨论。我们将关键的网络通讯模型和度量指标组织成一个分类法,旨在帮助研究人员在文献中越来越多的概念和方法中进行导航。该分类法强调了不同连接组信号传递概念化的优缺点和解释。我们通过回顾基础、认知和临床神经科学中的突出应用,展示了网络通讯模型作为研究大脑功能的灵活、可解释和可处理框架的实用性。最后,我们提供了一些建议,以指导网络通讯模型的未来发展、应用和验证。