Suppr超能文献

基于数据驱动的方法鉴定大肠埃希菌和金黄色葡萄球菌诱导成人脓毒症的转录标志物。

Transcriptional markers classifying Escherichia coli and Staphylococcus aureus induced sepsis in adults: A data-driven approach.

机构信息

Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

出版信息

PLoS One. 2024 Jul 5;19(7):e0305920. doi: 10.1371/journal.pone.0305920. eCollection 2024.

Abstract

Sepsis is a life-threatening condition mainly caused by gram-negative and gram-positive bacteria. Understanding the type of causative agent in the early stages is essential for precise antibiotic therapy. This study sought to identify a host gene set capable of distinguishing between sepsis induced by gram-negative bacteria; Escherichia coli and gram-positive bacteria; Staphylococcus aureus in community-onset adult patients. In the present study, microarray expression information was used to apply the Least Absolute Shrinkage and Selection Operator (Lasso) technique to select the predictive gene set for classifying sepsis induced by E. coli or S. aureus pathogens. We identified 25 predictive genes, including LILRA5 and TNFAIP6, which had previously been associated with sepsis in other research. Using these genes, we trained a logistic regression classifier to distinguish whether a sample contains an E. coli or S. aureus infection or belongs to a healthy control group, and subsequently assessed its performance. The classifier achieved an Area Under the Curve (AUC) of 0.96 for E. coli and 0.98 for S. aureus-induced sepsis, and perfect discrimination (AUC of 1) for healthy controls from the other conditions in a 10-fold cross-validation. The genes demonstrated an AUC of 0.75 in distinguishing between sepsis patients with E. coli and S. aureus pathogens. These findings were further confirmed in two distinct independent validation datasets which gave high prediction AUC ranging from 0.72-0.87 and 0.62 in distinguishing three groups of participants and two groups of patients respectively. These genes were significantly enriched in the immune system, cytokine signaling in immune system, innate immune system, and interferon signaling. Transcriptional patterns in blood can differentiate patients with E. coli-induced sepsis from those with S. aureus-induced sepsis. These diagnostic markers, upon validation in larger trials, may serve as a foundation for a reliable differential diagnostics assay.

摘要

脓毒症是一种危及生命的疾病,主要由革兰氏阴性菌和革兰氏阳性菌引起。在早期了解致病因子的类型对于精确的抗生素治疗至关重要。本研究旨在鉴定一组宿主基因,这些基因能够区分社区获得性成年患者中由革兰氏阴性菌(大肠杆菌)和革兰氏阳性菌(金黄色葡萄球菌)引起的脓毒症。在本研究中,使用微阵列表达信息应用最小绝对收缩和选择算子(Lasso)技术来选择用于分类由大肠杆菌或金黄色葡萄球菌病原体引起的脓毒症的预测基因集。我们鉴定了 25 个预测基因,包括 LILRA5 和 TNFAIP6,它们以前在其他研究中与脓毒症有关。使用这些基因,我们训练了一个逻辑回归分类器来区分样本是否含有大肠杆菌或金黄色葡萄球菌感染或属于健康对照组,然后评估其性能。该分类器在 10 倍交叉验证中对大肠杆菌引起的脓毒症的 AUC 为 0.96,对金黄色葡萄球菌引起的脓毒症的 AUC 为 0.98,对健康对照组的 AUC 为 1,区分度完美。这些基因在区分大肠杆菌和金黄色葡萄球菌引起的脓毒症患者方面的 AUC 为 0.75。这些发现在两个不同的独立验证数据集中得到了进一步证实,这些数据集的预测 AUC 分别为 0.72-0.87 和 0.62,用于区分三组参与者和两组患者。这些基因在免疫系统、免疫细胞因子信号转导、固有免疫系统和干扰素信号转导中显著富集。血液中的转录模式可以区分大肠杆菌引起的脓毒症患者和金黄色葡萄球菌引起的脓毒症患者。这些诊断标志物在更大规模的试验中得到验证后,可能成为可靠的鉴别诊断检测的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6297/11226107/669310b84309/pone.0305920.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验