Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan.
Universal Biology Institute, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan.
Nucleic Acids Res. 2022 Apr 22;50(7):3727-3744. doi: 10.1093/nar/gkac175.
During the cellular adaptation to nutrient starvation, cells temporarily decelerate translation processes including ribosomal biogenesis. However, the mechanisms repressing robust gene expression from the ribosomal gene cluster (rDNA) are unclear. Here, we demonstrate that fission yeast cells facing glucose starvation assemble facultative heterochromatin in rDNA leading to its transcriptional repression. Glucose starvation induces quick dissociation of the ATF/CREB-family protein Atf1 from rDNA, where in turn the histone chaperone FACT is recruited to promote H3K9 methylation and heterochromatinization. We also identify the histone acetyltransferase Gcn5 as a repressor of rDNA heterochromatinization in glucose-rich conditions, and this protein dissociates from rDNA upon glucose starvation. Facultative heterochromatin formation in rDNA requires histone deacetylases Clr3 and both the RNAi-dependent and -independent gene silencing pathways. This is essential in adaptation to starvation since mutants lacking heterochromatin formation in rDNA lead to untimely cell death during glucose starvation.
在细胞适应营养饥饿的过程中,细胞会暂时减缓包括核糖体生物发生在内的翻译过程。然而,抑制核糖体基因簇 (rDNA) 中基因表达的机制尚不清楚。在这里,我们证明了面临葡萄糖饥饿的裂殖酵母细胞会在 rDNA 中组装兼性异染色质,从而导致其转录抑制。葡萄糖饥饿诱导 ATF/CREB 家族蛋白 Atf1 快速从 rDNA 上解离,随后组蛋白伴侣 FACT 被招募来促进 H3K9 甲基化和异染色质化。我们还发现组蛋白乙酰转移酶 Gcn5 是葡萄糖丰富条件下 rDNA 异染色质形成的抑制剂,并且该蛋白在葡萄糖饥饿时从 rDNA 上解离。rDNA 中的兼性异染色质形成需要组蛋白去乙酰化酶 Clr3 以及 RNAi 依赖性和非依赖性基因沉默途径。这对于适应饥饿至关重要,因为缺乏 rDNA 中异染色质形成的突变体会导致在葡萄糖饥饿期间过早死亡。