Qu Ning, Sun Hanxu, Sun Yuyao, He Mukun, Xing Ruizhe, Gu Junwei, Kong Jie
Shaanxi Key Laboratory of Macromolecular Science and Technology and MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
Nat Commun. 2024 Jul 5;15(1):5642. doi: 10.1038/s41467-024-49762-4.
The combination between macroscopic structure designs and microscopic material designs offers tremendous possibilities for the development of advanced electromagnetic wave (EMW) absorbers. Herein, we propose a metamaterial design to address persistent challenges in this field, including narrow bandwidth, low-frequency bottlenecks, and, particularly, the urgent issue of robustness (i.e., oblique, and polarized incidence). Our absorber features a semiconductive metal-organic framework/iron 2D/2D assembly (CuHT-FCIP) with abundant crystal/crystal heterojunctions and strong magneto-electric coupling networks. This design achieves remarkable EMW absorption across a broad range (2 to 40 GHz) at a thickness of just 9.3 mm. Notably, it maintains stable performance against oblique incidence (within 75°) and polarizations (both transverse electric and transverse magnetic). Furthermore, the absorber demonstrates high specific compressive strength (201.01 MPa·cm·g) and low density (0.89 g·cm). This advancement holds promise for developing robust EMW absorbers with superior performance.
宏观结构设计与微观材料设计的结合为先进电磁波(EMW)吸收体的发展提供了巨大的可能性。在此,我们提出一种超材料设计,以应对该领域长期存在的挑战,包括带宽窄、低频瓶颈,尤其是迫切的稳健性问题(即斜入射和极化入射)。我们的吸收体具有一种半导体金属有机框架/铁二维/二维组件(CuHT-FCIP),具有丰富的晶体/晶体异质结和强磁电耦合网络。这种设计在仅9.3毫米的厚度下,在宽范围(2至40 GHz)内实现了显著的EMW吸收。值得注意的是,它在斜入射(75°以内)和极化(横向电和横向磁)情况下都保持稳定的性能。此外,该吸收体还具有高比压缩强度(201.01 MPa·cm·g)和低密度(0.89 g·cm)。这一进展为开发具有卓越性能的稳健EMW吸收体带来了希望。