Suppr超能文献

通过协同杂原子掺杂和碳锚定克服尖晶石氧化物驱动类芬顿反应中金属氧化还原速率限制,实现高效去除微量污染物。

Overcoming metals redox rate limitations in spinel oxide-driven Fenton-like reactions via synergistic heteroatom doping and carbon anchoring for efficient micropollutant removal.

机构信息

School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.

出版信息

Water Res. 2024 Sep 1;261:122020. doi: 10.1016/j.watres.2024.122020. Epub 2024 Jun 29.

Abstract

The transition metals redox rate limitations of spinel oxides during Fenton-like reactions hinder its efficient and sustainable treatment of actual wastewater. Herein, we propose to optimize the electronic structure of Co-Mn spinel oxide (CM) via sulfur doping and carbon matrix anchoring synergistically, enhancing the radicals-nonradicals Fenton-like processes for efficient water decontamination. Activating peroxymonosulfate (PMS) with optimised spinel oxide (CMSAC) achieved near-complete removal of ofloxacin (10 mg/L) within 6 min, showing 8.4 times higher efficiency than CM group. Significantly higher yields of SO· and high-valent metal species in CMSAC/PMS system provided exceptional resistance to co-existing anions, enabling efficient removal of various emerging contaminants in high salinity leachate. Specifically, sulfur coordination and carbon anchoring-induced oxygen vacancy synergistically improved the electronic structure and electron transfer efficiency of CMSAC, thus forming highly reactive Co sites and significantly reducing the energy barrier for Co(IV)=O generation. The reductive sulfur species facilitated the conversion of Co(III) to Co(II), thereby maintaining the stability of the catalytic activity of CMSAC. This work developed a synergistic optimization strategy to overcome the metals redox rate limitations of spinel oxides in Fenton-like reactions, providing deep mechanistic insights for designing Fenton-like catalysts suitable for practical applications.

摘要

尖晶石氧化物在类芬顿反应中过渡金属氧化还原速率的限制阻碍了其对实际废水的有效和可持续处理。在此,我们通过协同硫掺杂和碳基质锚定来优化 Co-Mn 尖晶石氧化物(CM)的电子结构,增强自由基-非自由基类芬顿反应过程,以实现高效的水净化。优化后的尖晶石氧化物(CMSAC)可有效活化过一硫酸盐(PMS),在 6 分钟内即可完全去除 10 mg/L 的氧氟沙星,其效率比 CM 组高 8.4 倍。CMSAC/PMS 体系中 SO·和高价金属物种的产率较高,对共存阴离子具有优异的抗干扰能力,能够有效去除高盐渗滤液中的各种新兴污染物。具体来说,硫配位和碳锚定诱导的氧空位协同作用改善了 CMSAC 的电子结构和电子转移效率,从而形成了高反应性的 Co 位,并显著降低了 Co(IV)=O 生成的能垒。还原性硫物种促进了 Co(III)向 Co(II)的转化,从而保持了 CMSAC 催化活性的稳定性。这项工作开发了一种协同优化策略,克服了尖晶石氧化物在类芬顿反应中金属氧化还原速率的限制,为设计适用于实际应用的类芬顿催化剂提供了深入的机理见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验