School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
Water Res. 2024 Sep 1;261:122020. doi: 10.1016/j.watres.2024.122020. Epub 2024 Jun 29.
The transition metals redox rate limitations of spinel oxides during Fenton-like reactions hinder its efficient and sustainable treatment of actual wastewater. Herein, we propose to optimize the electronic structure of Co-Mn spinel oxide (CM) via sulfur doping and carbon matrix anchoring synergistically, enhancing the radicals-nonradicals Fenton-like processes for efficient water decontamination. Activating peroxymonosulfate (PMS) with optimised spinel oxide (CMSAC) achieved near-complete removal of ofloxacin (10 mg/L) within 6 min, showing 8.4 times higher efficiency than CM group. Significantly higher yields of SO· and high-valent metal species in CMSAC/PMS system provided exceptional resistance to co-existing anions, enabling efficient removal of various emerging contaminants in high salinity leachate. Specifically, sulfur coordination and carbon anchoring-induced oxygen vacancy synergistically improved the electronic structure and electron transfer efficiency of CMSAC, thus forming highly reactive Co sites and significantly reducing the energy barrier for Co(IV)=O generation. The reductive sulfur species facilitated the conversion of Co(III) to Co(II), thereby maintaining the stability of the catalytic activity of CMSAC. This work developed a synergistic optimization strategy to overcome the metals redox rate limitations of spinel oxides in Fenton-like reactions, providing deep mechanistic insights for designing Fenton-like catalysts suitable for practical applications.
尖晶石氧化物在类芬顿反应中过渡金属氧化还原速率的限制阻碍了其对实际废水的有效和可持续处理。在此,我们通过协同硫掺杂和碳基质锚定来优化 Co-Mn 尖晶石氧化物(CM)的电子结构,增强自由基-非自由基类芬顿反应过程,以实现高效的水净化。优化后的尖晶石氧化物(CMSAC)可有效活化过一硫酸盐(PMS),在 6 分钟内即可完全去除 10 mg/L 的氧氟沙星,其效率比 CM 组高 8.4 倍。CMSAC/PMS 体系中 SO·和高价金属物种的产率较高,对共存阴离子具有优异的抗干扰能力,能够有效去除高盐渗滤液中的各种新兴污染物。具体来说,硫配位和碳锚定诱导的氧空位协同作用改善了 CMSAC 的电子结构和电子转移效率,从而形成了高反应性的 Co 位,并显著降低了 Co(IV)=O 生成的能垒。还原性硫物种促进了 Co(III)向 Co(II)的转化,从而保持了 CMSAC 催化活性的稳定性。这项工作开发了一种协同优化策略,克服了尖晶石氧化物在类芬顿反应中金属氧化还原速率的限制,为设计适用于实际应用的类芬顿催化剂提供了深入的机理见解。