Suppr超能文献

电子离域引发尖晶石氧化物类非自由基芬顿催化。

Electron delocalization triggers nonradical Fenton-like catalysis over spinel oxides.

机构信息

Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China.

University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advanced Study, Suzhou 215123, China.

出版信息

Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2201607119. doi: 10.1073/pnas.2201607119. Epub 2022 Jul 25.

Abstract

Nonradical Fenton-like catalysis offers opportunities to overcome the low efficiency and secondary pollution limitations of existing advanced oxidation decontamination technologies, but realizing this on transition metal spinel oxide catalysts remains challenging due to insufficient understanding of their catalytic mechanisms. Here, we explore the origins of catalytic selectivity of Fe-Mn spinel oxide and identify electron delocalization of the surface metal active site as the key driver of its nonradical catalysis. Through fine-tuning the crystal geometry to trigger Fe-Mn superexchange interaction at the spinel octahedra, ZnFeMnO with high-degree electron delocalization of the Mn-O unit was created to enable near 100% nonradical activation of peroxymonosulfate (PMS) at unprecedented utilization efficiency. The resulting surface-bound PMS* complex can efficiently oxidize electron-rich pollutants with extraordinary degradation activity, selectivity, and good environmental robustness to favor water decontamination applications. Our work provides a molecule-level understanding of the catalytic selectivity and bimetallic interactions of Fe-Mn spinel oxides, which may guide the design of low-cost spinel oxides for more selective and efficient decontamination applications.

摘要

非自由基芬顿类催化为克服现有高级氧化去污技术效率低和二次污染的局限性提供了机会,但由于对其催化机制的理解不足,在过渡金属尖晶石氧化物催化剂上实现这一目标仍然具有挑战性。在这里,我们探索了 Fe-Mn 尖晶石氧化物催化选择性的起源,并确定了表面金属活性位的电子离域是其非自由基催化的关键驱动因素。通过精细调整晶体几何形状,在尖晶石八面体中引发 Fe-Mn 超交换相互作用,合成了具有高程度 Mn-O 单元电子离域的 ZnFeMnO,以实现过一硫酸盐 (PMS) 的近 100%非自由基活化,其利用效率前所未有。由此产生的表面结合的 PMS* 配合物可以有效地氧化富电子污染物,具有非凡的降解活性、选择性和良好的环境稳定性,有利于水的去污应用。我们的工作提供了对 Fe-Mn 尖晶石氧化物催化选择性和双金属相互作用的分子水平理解,这可能为更具选择性和高效去污应用的低成本尖晶石氧化物的设计提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576c/9351537/73d4ecd377e8/pnas.2201607119fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验