Suppr超能文献

利用电子健康记录准确预测代谢功能障碍相关脂肪性肝病患者的全因死亡率。

Accurate prediction of all-cause mortality in patients with metabolic dysfunction-associated steatotic liver disease using electronic health records.

机构信息

Bering Limited, London, UK.

Leeds Institute of Medical Research, University of Leeds, UK; Leeds Liver Unit, St James's University Hospital, Leeds Teaching Hospitals, UK.

出版信息

Ann Hepatol. 2024 Sep-Oct;29(5):101528. doi: 10.1016/j.aohep.2024.101528. Epub 2024 Jul 4.

Abstract

INTRODUCTION AND OBJECTIVES

Despite the huge clinical burden of MASLD, validated tools for early risk stratification are lacking, and heterogeneous disease expression and a highly variable rate of progression to clinical outcomes result in prognostic uncertainty. We aimed to investigate longitudinal electronic health record-based outcome prediction in MASLD using a state-of-the-art machine learning model.

PATIENTS AND METHODS

n = 940 patients with histologically-defined MASLD were used to develop a deep-learning model for all-cause mortality prediction. Patient timelines, spanning 12 years, were fully-annotated with demographic/clinical characteristics, ICD-9 and -10 codes, blood test results, prescribing data, and secondary care activity. A Transformer neural network (TNN) was trained to output concomitant probabilities of 12-, 24-, and 36-month all-cause mortality. In-sample performance was assessed using 5-fold cross-validation. Out-of-sample performance was assessed in an independent set of n = 528 MASLD patients.

RESULTS

In-sample model performance achieved AUROC curve 0.74-0.90 (95 % CI: 0.72-0.94), sensitivity 64 %-82 %, specificity 75 %-92 % and Positive Predictive Value (PPV) 94 %-98 %. Out-of-sample model validation had AUROC 0.70-0.86 (95 % CI: 0.67-0.90), sensitivity 69 %-70 %, specificity 96 %-97 % and PPV 75 %-77 %. Key predictive factors, identified using coefficients of determination, were age, presence of type 2 diabetes, and history of hospital admissions with length of stay >14 days.

CONCLUSIONS

A TNN, applied to routinely-collected longitudinal electronic health records, achieved good performance in prediction of 12-, 24-, and 36-month all-cause mortality in patients with MASLD. Extrapolation of our technique to population-level data will enable scalable and accurate risk stratification to identify people most likely to benefit from anticipatory health care and personalized interventions.

摘要

简介和目的

尽管 MASLD 带来了巨大的临床负担,但缺乏有效的早期风险分层工具,而且疾病表现的异质性和向临床结果进展的高度可变率导致预后不确定。我们旨在使用最先进的机器学习模型研究 MASLD 的基于纵向电子健康记录的结果预测。

患者和方法

使用 n = 940 名经组织学定义的 MASLD 患者来开发用于全因死亡率预测的深度学习模型。患者的时间线长达 12 年,完全标注了人口统计学/临床特征、ICD-9 和 -10 代码、血液检查结果、处方数据和二级保健活动。训练 Transformer 神经网络 (TNN) 以输出 12、24 和 36 个月全因死亡率的并发概率。使用 5 折交叉验证评估样本内性能。在 n = 528 名 MASLD 患者的独立样本中评估样本外性能。

结果

样本内模型性能达到 AUROC 曲线 0.74-0.90(95%CI:0.72-0.94)、敏感性 64%-82%、特异性 75%-92%和阳性预测值 (PPV) 94%-98%。样本外模型验证的 AUROC 为 0.70-0.86(95%CI:0.67-0.90)、敏感性 69%-70%、特异性 96%-97%和 PPV 75%-77%。使用决定系数确定的关键预测因素是年龄、2 型糖尿病的存在以及住院时间>14 天的住院史。

结论

TNN 应用于常规收集的纵向电子健康记录,在 MASLD 患者的 12、24 和 36 个月全因死亡率预测中取得了良好的效果。将我们的技术推广到人群水平数据将能够进行可扩展和准确的风险分层,以确定最有可能受益于预期保健和个性化干预的人群。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验