Suppr超能文献

浮石负载 ZnO 光催化降解纺织废水中的有机污染物:响应面法、人工神经网络和自适应神经模糊推理系统的优化。

Pumice-supported ZnO-photocatalyzed degradation of organic pollutant in textile effluent: optimization by response surface methodology, artificial neural network, and adaptive neural-fuzzy inference system.

机构信息

Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University, Ado-Ekiti, Nigeria.

Department of Chemical Engineering, Faculty of Technology, Obafemi Awolowo University, Ile-Ife, Nigeria.

出版信息

Environ Sci Pollut Res Int. 2022 Apr;29(17):25138-25156. doi: 10.1007/s11356-021-17496-1. Epub 2021 Nov 27.

Abstract

A heterogeneous photocatalysis was adopted to treat textile industry effluent using a combination of pumice-supported ZnO (PUM-ZnO) photocatalyst and solar irradiation. The visible light-responsive PUM-ZnO photocatalyst was prepared via the impregnation method and characterized using various spectroscopic techniques. The photocatalytic degradation process was modeled via response surface methodology (RSM), artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS), while the optimization of the three independent parameters significant to the photocatalytic process was carried out by a genetic algorithm (GA) and RSM methods. The low standard error of prediction (SEP) of 0.56-1.75% and high coefficient of determination (R) greater than 0.96 for the models developed indicated that they adequately predicted the photodegradation process with high accuracy in the order of ANFIS > ANN > RSM. The process optimization results from the developed models showed that GA performed better than RSM. The best optimal condition (3.29 g/L catalyst dosage, 45.85 min irradiation time, and 3.13 effluent pH) that resulted in maximum degradation efficiency of 99.46% was achieved by the ANFIS model coupled with GA (ANFIS-GA).

摘要

采用多相光催化技术,结合浮石负载 ZnO(PUM-ZnO)光催化剂和太阳辐射处理纺织工业废水。通过浸渍法制备了对可见光响应的 PUM-ZnO 光催化剂,并采用各种光谱技术对其进行了表征。采用响应面法(RSM)、人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)对光催化降解过程进行了建模,通过遗传算法(GA)和 RSM 方法对三个对光催化过程有显著影响的独立参数进行了优化。所开发模型的低预测标准误差(SEP)为 0.56-1.75%,决定系数(R)大于 0.96,表明它们以 ANFIS>ANN>RSM 的顺序高度准确地预测了光降解过程。所开发模型的工艺优化结果表明,GA 比 RSM 表现更好。通过结合 GA 的 ANFIS 模型(ANFIS-GA),达到了最佳的优化条件(3.29 g/L 催化剂用量、45.85 min 照射时间和 3.13 废水 pH),最大降解效率达到 99.46%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验