Department of Breast Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi Hu District, Nanchang City, 330008, Jiangxi Province, China.
Department of General Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi Hu District, Nanchang City, 330008, Jiangxi Province, China.
Sci Rep. 2024 Jul 6;14(1):15602. doi: 10.1038/s41598-024-66573-1.
To establish and validate a predictive model for breast cancer-related lymphedema (BCRL) among Chinese patients to facilitate individualized risk assessment. We retrospectively analyzed data from breast cancer patients treated at a major single-center breast hospital in China. From 2020 to 2022, we identified risk factors for BCRL through logistic regression and developed and validated a nomogram using R software (version 4.1.2). Model validation was achieved through the application of receiver operating characteristic curve (ROC), a calibration plot, and decision curve analysis (DCA), with further evaluated by internal validation. Among 1485 patients analyzed, 360 developed lymphedema (24.2%). The nomogram incorporated body mass index, operative time, lymph node count, axillary dissection level, surgical site infection, and radiotherapy as predictors. The AUCs for training (N = 1038) and validation (N = 447) cohorts were 0.779 and 0.724, respectively, indicating good discriminative ability. Calibration and decision curve analysis confirmed the model's clinical utility. Our nomogram provides an accurate tool for predicting BCRL risk, with potential to enhance personalized management in breast cancer survivors. Further prospective validation across multiple centers is warranted.
为了在中国患者中建立和验证乳腺癌相关淋巴水肿(BCRL)的预测模型,以促进个体化风险评估。我们回顾性分析了中国一家主要单中心乳腺医院治疗的乳腺癌患者的数据。2020 年至 2022 年,我们通过逻辑回归确定了 BCRL 的风险因素,并使用 R 软件(版本 4.1.2)开发和验证了一个列线图。通过接受者操作特征曲线(ROC)、校准图和决策曲线分析(DCA)对模型进行验证,并通过内部验证进一步评估。在分析的 1485 名患者中,有 360 名患者发生了淋巴水肿(24.2%)。该列线图将体重指数、手术时间、淋巴结计数、腋窝解剖水平、手术部位感染和放疗作为预测因素。训练队列(N=1038)和验证队列(N=447)的 AUC 分别为 0.779 和 0.724,表明具有良好的判别能力。校准和决策曲线分析证实了该模型的临床实用性。我们的列线图为预测 BCRL 风险提供了一种准确的工具,有可能增强乳腺癌幸存者的个性化管理。有必要在多个中心进行前瞻性验证。