Suppr超能文献

智能激光烧结:深度学习助力精准医学中的粉末床融合 3D 打印。

Smart laser Sintering: Deep Learning-Powered powder bed fusion 3D printing in precision medicine.

机构信息

UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.

Department of Electronic and Electrical Engineering, University College London, Gower Street, London WC1E 6BT, UK.

出版信息

Int J Pharm. 2024 Aug 15;661:124440. doi: 10.1016/j.ijpharm.2024.124440. Epub 2024 Jul 6.

Abstract

Medicines remain ineffective for over 50% of patients due to conventional mass production methods with fixed drug dosages. Three-dimensional (3D) printing, specifically selective laser sintering (SLS), offers a potential solution to this challenge, allowing the manufacturing of small, personalized batches of medication. Despite its simplicity and suitability for upscaling to large-scale production, SLS was not designed for pharmaceutical manufacturing and necessitates a time-consuming, trial-and-error adaptation process. In response, this study introduces a deep learning model trained on a variety of features to identify the best feature set to represent drugs and polymeric materials for the prediction of the printability of drug-loaded formulations using SLS. The proposed model demonstrates success by achieving 90% accuracy in predicting printability. Furthermore, explainability analysis unveils materials that facilitate SLS printability, offering invaluable insights for scientists to optimize SLS formulations, which can be expanded to other disciplines. This represents the first study in the field to develop an interpretable, uncertainty-optimized deep learning model for predicting the printability of drug-loaded formulations. This paves the way for accelerating formulation development, propelling us into a future of personalized medicine with unprecedented manufacturing precision.

摘要

由于传统的大规模生产方法和固定的药物剂量,超过 50%的患者的药物仍然无效。三维(3D)打印,特别是选择性激光烧结(SLS),为解决这一挑战提供了一个潜在的解决方案,允许制造小批量的个性化药物。尽管 SLS 简单且适合大规模生产,但它不是为制药生产而设计的,需要一个耗时的、反复试验的适应过程。有鉴于此,本研究引入了一个经过多种特征训练的深度学习模型,以确定最佳特征集来表示药物和聚合物材料,用于预测使用 SLS 的载药制剂的可印刷性。该模型通过在预测可印刷性方面达到 90%的准确率取得了成功。此外,可解释性分析揭示了有助于 SLS 可印刷性的材料,为科学家优化 SLS 配方提供了宝贵的见解,这可以扩展到其他学科。这是该领域首次开发可解释的、不确定性优化的深度学习模型来预测载药制剂的可印刷性。这为加速配方开发铺平了道路,使我们能够以前所未有的制造精度进入个性化医疗的未来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验