College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
School of Automation, Wuhan University of Technology, Wuhan, 430070, China.
Sci Rep. 2024 Jul 7;14(1):15628. doi: 10.1038/s41598-024-66450-x.
This paper introduces a novel meta-heuristic algorithm named Rhinopithecus Swarm Optimization (RSO) to address optimization problems, particularly those involving high dimensions. The proposed algorithm is inspired by the social behaviors of different groups within the rhinopithecus swarm. RSO categorizes the swarm into mature, adolescent, and infancy individuals. Due to this division of labor, each category of individuals employs unique search methods, including vertical migration, concerted search, and mimicry. To evaluate the effectiveness of RSO, we conducted experiments using the CEC2017 test set and three constrained engineering problems. Each function in the test set was independently executed 36 times. Additionally, we used the Wilcoxon signed-rank test and the Friedman test to analyze the performance of RSO compared to eight well-known optimization algorithms: Dung Beetle Optimizer (DBO), Beluga Whale Optimization (BWO), Salp Swarm Algorithm (SSA), African Vultures Optimization Algorithm (AVOA), Whale Optimization Algorithm (WOA), Atomic Retrospective Learning Bare Bone Particle Swarm Optimization (ARBBPSO), Artificial Gorilla Troops Optimizer (GTO), and Harris Hawks Optimization (HHO). The results indicate that RSO exhibited outstanding performance on the CEC2017 test set for both 30 and 100 dimension. Moreover, RSO ranked first in both dimensions, surpassing the mean rank of the second-ranked algorithms by 7.69% and 42.85%, respectively. Across the three classical engineering design problems, RSO consistently achieves the best results. Overall, it can be concluded that RSO is particularly effective for solving high-dimensional optimization problems.
本文提出了一种名为“Rhinopithecus 蜂群优化算法(RSO)”的新颖启发式算法,用于解决优化问题,特别是那些涉及高维问题的优化问题。该算法的灵感来源于不同组群的滇金丝猴社会行为。RSO 将蜂群分为成熟个体、青少年个体和婴儿个体。由于这种分工,每个类别的个体都采用独特的搜索方法,包括垂直迁移、协同搜索和模仿。为了评估 RSO 的有效性,我们使用 CEC2017 测试集和三个约束工程问题进行了实验。测试集中的每个函数都独立执行了 36 次。此外,我们使用 Wilcoxon 符号秩检验和 Friedman 检验来分析 RSO 与八种著名优化算法(Dung Beetle Optimizer(DBO)、Beluga Whale Optimization(BWO)、Salp Swarm Algorithm(SSA)、African Vultures Optimization Algorithm(AVOA)、Whale Optimization Algorithm(WOA)、Atomic Retrospective Learning Bare Bone Particle Swarm Optimization(ARBBPSO)、Artificial Gorilla Troops Optimizer(GTO)和 Harris Hawks Optimization(HHO))的性能。结果表明,RSO 在 CEC2017 测试集上的 30 维和 100 维都表现出了出色的性能。此外,RSO 在两个维度上均排名第一,分别比排名第二的算法的平均排名高出 7.69%和 42.85%。在三个经典工程设计问题中,RSO 始终取得最佳结果。总的来说,可以得出结论,RSO 特别适用于解决高维优化问题。