Suppr超能文献

用于数值优化和实际问题的红尾鹰算法。

Red-tailed hawk algorithm for numerical optimization and real-world problems.

作者信息

Ferahtia Seydali, Houari Azeddine, Rezk Hegazy, Djerioui Ali, Machmoum Mohamed, Motahhir Saad, Ait-Ahmed Mourad

机构信息

Institut de Recherche en Énergie Électrique de Nantes Atlantique, IREENA, Nantes University, Saint-Nazaire, France.

Laboratoire de Génie Electrique, Dept. of Electrical Engineering, University of M'sila, M'sila, Algeria.

出版信息

Sci Rep. 2023 Aug 9;13(1):12950. doi: 10.1038/s41598-023-38778-3.

Abstract

This study suggests a new nature-inspired metaheuristic optimization algorithm called the red-tailed hawk algorithm (RTH). As a predator, the red-tailed hawk has a hunting strategy from detecting the prey until the swoop stage. There are three stages during the hunting process. In the high soaring stage, the red-tailed hawk explores the search space and determines the area with the prey location. In the low soaring stage, the red-tailed moves inside the selected area around the prey to choose the best position for the hunt. Then, the red-tailed swings and hits its target in the stooping and swooping stages. The proposed algorithm mimics the prey-hunting method of the red-tailed hawk for solving real-world optimization problems. The performance of the proposed RTH algorithm has been evaluated on three classes of problems. The first class includes three specific kinds of optimization problems: 22 standard benchmark functions, including unimodal, multimodal, and fixed-dimensional multimodal functions, IEEE Congress on Evolutionary Computation 2020 (CEC2020), and IEEE CEC2022. The proposed algorithm is compared with eight recent algorithms to confirm its contribution to solving these problems. The considered algorithms are Farmland Fertility Optimizer (FO), African Vultures Optimization Algorithm (AVOA), Mountain Gazelle Optimizer (MGO), Gorilla Troops Optimizer (GTO), COOT algorithm, Hunger Games Search (HGS), Aquila Optimizer (AO), and Harris Hawks optimization (HHO). The results are compared regarding the accuracy, robustness, and convergence speed. The second class includes seven real-world engineering problems that will be considered to investigate the RTH performance compared to other published results profoundly. Finally, the proton exchange membrane fuel cell (PEMFC) extraction parameters will be performed to evaluate the algorithm with a complex problem. The proposed algorithm will be compared with several published papers to approve its performance. The ultimate results for each class confirm the ability of the proposed RTH algorithm to provide higher performance for most cases. For the first class, the RTH mostly got the optimal solutions for most functions with faster convergence speed. The RTH provided better performance for the second and third classes when resolving the real word engineering problems or extracting the PEMFC parameters.

摘要

本研究提出了一种受自然启发的新型元启发式优化算法,称为红尾鹰算法(RTH)。作为一种捕食者,红尾鹰具有从探测猎物到俯冲阶段的狩猎策略。狩猎过程分为三个阶段。在高空翱翔阶段,红尾鹰探索搜索空间并确定有猎物位置的区域。在低空翱翔阶段,红尾鹰在选定的猎物周围区域内移动,以选择最佳的狩猎位置。然后,红尾鹰在俯冲阶段摆动并击中目标。所提出的算法模仿红尾鹰的捕食方法来解决实际优化问题。所提出的RTH算法的性能已在三类问题上进行了评估。第一类包括三种特定类型的优化问题:22个标准基准函数,包括单峰、多峰和固定维多峰函数、2020年IEEE进化计算大会(CEC2020)以及IEEE CEC2022。将所提出的算法与最近的八种算法进行比较,以确认其对解决这些问题的贡献。所考虑的算法有农田肥力优化器(FO)、非洲秃鹫优化算法(AVOA)、山地瞪羚优化器(MGO)、大猩猩群优化器(GTO)、COOT算法、饥饿游戏搜索(HGS)、天鹰座优化器(AO)和哈里斯鹰优化(HHO)。从准确性、鲁棒性和收敛速度方面对结果进行了比较。第二类包括七个实际工程问题,将对其进行深入研究,以将RTH的性能与其他已发表的结果进行比较。最后,将对质子交换膜燃料电池(PEMFC)的提取参数进行评估,以用一个复杂问题来评估该算法。将所提出的算法与几篇已发表的论文进行比较,以验证其性能。每类问题的最终结果证实了所提出的RTH算法在大多数情况下提供更高性能的能力。对于第一类问题,RTH在大多数函数上大多以更快的收敛速度获得了最优解。在解决实际工程问题或提取PEMFC参数时,RTH在第二类和第三类问题上表现出更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/10412609/5c8bfc5c4cda/41598_2023_38778_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验