Alcolea-Medina Adela, Alder Christopher, Snell Luke B, Charalampous Themoula, Aydin Alp, Nebbia Gaia, Williams Tom, Goldenberg Simon, Douthwaite Sam, Batra Rahul, Cliff Penelope R, Mischo Hannah, Neil Stuart, Wilks Mark, Edgeworth Jonathan D
Infection Sciences, Synnovis, London, UK.
Center for Clinical Infection and Diagnostics Research, Guys' and St. Thomas' NHS Foundation Trust, London, UK.
Commun Med (Lond). 2024 Jul 7;4(1):135. doi: 10.1038/s43856-024-00554-3.
Clinical metagenomics involves the genomic sequencing of all microorganisms in clinical samples ideally after depletion of human DNA to increase sensitivity and reduce turnaround times. Current human DNA depletion methods preferentially preserve either DNA or RNA containing microbes, but not both simultaneously. Here we describe and present data using a practical and rapid mechanical host-depletion method allowing simultaneous detection of RNA and DNA microorganisms linked with nanopore sequencing.
The human cells from respiratory samples are lysed mechanically using 1.4 mm zirconium-silicate spheres and the human DNA is depleted using a nonspecific endonuclease. The RNA is converted to dsDNA to allow the simultaneous sequencing of DNA and RNA.
The method decreases human DNA concentration by a median of eight Ct values while detecting a broad range of RNA & DNA viruses, bacteria, including atypical pathogens (Legionella, Chlamydia, Mycoplasma) and fungi (Candida, Pneumocystis, Aspergillus). The first automated reports are generated after 30 min sequencing from a 7 h end-to-end workflow. Sensitivity and specificity for bacterial detection are 90% and 100%, respectively, and viral detection are 92% and 100% after 2 h of sequencing. Prospective validation on 33 consecutive lower respiratory tract samples from ventilated patients with suspected pneumonia shows 60% concordance with routine testing, detection of additional pathogens in 21% of samples and pathogen genomic assembly achieve for 42% of viruses and 33% of bacteria.
Although further workflow refinement and validation on samples containing a broader range of pathogens is required, it holds promise as a clinically deployable workflow suitable for evaluation in routine microbiology laboratories.
临床宏基因组学涉及对临床样本中所有微生物进行基因组测序,理想情况下是在去除人类DNA后进行,以提高灵敏度并缩短周转时间。目前的人类DNA去除方法优先保留含DNA或RNA的微生物,但不能同时保留两者。在此,我们描述并展示了一种实用且快速的机械宿主去除方法的数据,该方法可同时检测与纳米孔测序相关的RNA和DNA微生物。
使用1.4毫米硅酸锆珠对呼吸道样本中的人类细胞进行机械裂解,并使用非特异性核酸内切酶去除人类DNA。将RNA转化为双链DNA以实现DNA和RNA的同时测序。
该方法可使人类DNA浓度中位数降低8个Ct值,同时检测多种RNA和DNA病毒、细菌,包括非典型病原体(军团菌、衣原体、支原体)和真菌(念珠菌、肺孢子菌、曲霉菌)。从7小时的端到端工作流程开始测序30分钟后生成首批自动报告。测序2小时后,细菌检测的灵敏度和特异性分别为90%和100%,病毒检测的灵敏度和特异性分别为92%和100%。对33例疑似肺炎的通气患者连续下呼吸道样本进行的前瞻性验证显示,与常规检测的一致性为60%,在21%的样本中检测到额外病原体,42%的病毒和33%的细菌实现了病原体基因组组装。
尽管需要进一步优化工作流程并在包含更广泛病原体的样本上进行验证,但它有望成为一种适用于常规微生物实验室评估的临床可部署工作流程。