Suppr超能文献

在不同土壤磷有效性条件下,丛枝菌根共生会影响玉米对锌的吸收。

Maize zinc uptake is influenced by arbuscular mycorrhizal symbiosis under various soil phosphorus availabilities.

机构信息

Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China.

Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, 53113, Bonn, Germany.

出版信息

New Phytol. 2024 Sep;243(5):1936-1950. doi: 10.1111/nph.19952. Epub 2024 Jul 7.

Abstract

The antagonistic interplay between phosphorus (P) and zinc (Zn) in plants is well established. However, the molecular mechanisms mediating those interactions as influenced by arbuscular mycorrhizal (AM) symbiosis remain unclear. We investigated Zn concentrations, root AM symbiosis, and transcriptome profiles of maize roots grown under field conditions upon different P levels. We also validated genotype-dependent P-Zn uptake in selected genotypes from a MAGIC population and conducted mycorrhizal inoculation experiments using mycorrhizal-defective mutant pht1;6 to elucidate the significance of AM symbiosis in P-Zn antagonism. Finally, we assessed how P supply affects Zn transporters and Zn uptake in extraradical hyphae within a three-compartment system. Elevated P levels led to a significant reduction in maize Zn concentration across the population, correlating with a marked decline in AM symbiosis, thus elucidating the P-Zn antagonism. We also identified ZmPht1;6 is crucial for AM symbiosis and confirmed that P-Zn antagonistic uptake is dependent on AM symbiosis. Moreover, we found that high P suppressed the expression of the fungal RiZRT1 and RiZnT1 genes, potentially impacting hyphal Zn uptake. We conclude that high P exerts systemic regulation over root and AM hyphae-mediated Zn uptake in maize. These findings hold implications for breeding Zn deficiency-tolerant maize varieties.

摘要

植物中磷(P)和锌(Zn)之间的拮抗相互作用已得到充分证实。然而,在丛枝菌根(AM)共生的影响下,介导这些相互作用的分子机制仍不清楚。我们在田间条件下研究了不同磷水平下玉米根的 Zn 浓度、根 AM 共生和转录组谱。我们还验证了 MAGIC 群体中选定基因型的基因型依赖性 P-Zn 吸收,并使用缺乏 pht1;6 的菌根缺陷突变体进行了菌根接种实验,以阐明 AM 共生在 P-Zn 拮抗中的意义。最后,我们评估了 P 供应如何影响三隔室系统中根外菌丝中的 Zn 转运体和 Zn 吸收。高 P 水平导致整个群体中玉米 Zn 浓度显著降低,与 AM 共生的明显下降相关,从而阐明了 P-Zn 拮抗作用。我们还确定 ZmPht1;6 对 AM 共生至关重要,并证实 P-Zn 拮抗吸收依赖于 AM 共生。此外,我们发现高 P 抑制了 RiZRT1 和 RiZnT1 基因的表达,这可能会影响菌丝体 Zn 的吸收。我们得出结论,高 P 对玉米根和 AM 菌丝体介导的 Zn 吸收进行系统调节。这些发现对培育 Zn 缺乏耐受型玉米品种具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验