Suppr超能文献

丛枝菌根缓解氧化锌纳米颗粒和锌积累对玉米植株的负面影响——土壤微宇宙实验。

Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

机构信息

Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.

Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China; College of Resources and Environment, Southwest University, Chongqing 400716, People's Republic of China; Life Science Department, Luoyang Normal University, Luoyang 471022, Henan, People's Republic of China.

出版信息

Chemosphere. 2016 Mar;147:88-97. doi: 10.1016/j.chemosphere.2015.12.076. Epub 2016 Jan 4.

Abstract

ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems.

摘要

氧化锌纳米粒子(NPs)在高浓度时被认为是一种新兴污染物,它们对作物和土壤微生物的影响带来了新的关注和挑战。丛枝菌根(AM)真菌与大多数维管束植物形成共生关系,据称有助于减少植物中的纳米毒性。在这里,我们研究了在 ZnO NPs 污染土壤中接种或不接种 AMF 的玉米植株与 ZnO NPs 之间的相互作用。在 400mg/kg 时,ZnO NPs 没有显著的不良影响,但在 800mg/kg 及以上浓度时,既抑制了玉米的生长,也抑制了 AM 的定殖。足够量的 ZnO NPs 降低了植物对矿物质养分的获取、光合色素浓度和根活力。此外,ZnO NPs 导致植物中 Zn 浓度呈剂量依赖性增加。随着 ZnO NPs 剂量的增加,我们还发现与土壤二乙三胺五乙酸(DTPA)可提取 Zn 呈正相关。然而,AM 接种显著缓解了 ZnO NPs 引起的负面效应:接种植物的生长、养分吸收、光合色素含量和叶片中超氧化物歧化酶(SOD)活性均增加。菌根植物还表现出 ROS 积累减少、Zn 浓度和生物浓缩因子(BCF)降低,以及在高 ZnO NPs 剂量下土壤 DTPA 可提取 Zn 浓度降低。我们的结果表明,在高污染水平下,ZnO NPs 对 AM 共生体造成毒性,但 AMF 通过降低 Zn 的生物利用度和积累、Zn 向地上部分的分配、ROS 的产生,以及增加矿物质养分和抗氧化能力,有助于缓解 ZnO NPs 引起的植物毒性。AMF 可能在减轻农业生态系统中 ZnO NPs 带来的负面影响和环境风险方面发挥有益作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验