Wu Jiaxin, Zhu Rui, Li Guixiang, Zhang Zuhong, Pascual Jorge, Wu Hongzhuo, Aldamasy Mahmoud H, Wang Luyao, Su Zhenhuang, Turren-Cruz Silver-Hamill, Roy Rajarshi, Alharthi Fahad A, Alsalme Ali, Zhang Junhan, Gao Xingyu, Saliba Michael, Abate Antonio, Li Meng
Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
Adv Mater. 2024 Aug;36(35):e2407433. doi: 10.1002/adma.202407433. Epub 2024 Jul 7.
Interface-induced nonradiative recombination losses at the perovskite/electron transport layer (ETL) are an impediment to improving the efficiency and stability of inverted (p-i-n) perovskite solar cells (PSCs). Tridecafluorohexane-1-sulfonic acid potassium (TFHSP) is employed as a multifunctional dipole molecule to modify the perovskite surface. The solid coordination and hydrogen bonding efficiently passivate the surface defects, thereby reducing nonradiative recombination. The induced positive dipole layer between the perovskite and ETLs improves the energy band alignment, enhancing interface charge extraction. Additionally, the strong interaction between TFHSP and the perovskite stabilizes the perovskite surface, while the hydrophobic fluorinated moieties prevent the ingress of water and oxygen, enhancing the device stability. The resultant devices achieve a power conversion efficiency (PCE) of 24.6%. The unencapsulated devices retain 91% of their initial efficiency after 1000 h in air with 60% relative humidity, and 95% after 500 h under maximum power point (MPP) tracking at 35 °C. The utilization of multifunctional dipole molecules opens new avenues for high-performance and long-term stable perovskite devices.
钙钛矿/电子传输层(ETL)界面诱导的非辐射复合损失是提高倒置(p-i-n)钙钛矿太阳能电池(PSC)效率和稳定性的一个障碍。十三氟己烷-1-磺酸钾(TFHSP)被用作多功能偶极分子来修饰钙钛矿表面。固体配位和氢键有效地钝化了表面缺陷,从而减少了非辐射复合。在钙钛矿和ETL之间诱导的正偶极层改善了能带排列,增强了界面电荷提取。此外,TFHSP与钙钛矿之间的强相互作用稳定了钙钛矿表面,而疏水性氟化部分可防止水和氧气的进入,提高了器件稳定性。所得器件的功率转换效率(PCE)达到了24.6%。未封装的器件在相对湿度为60%的空气中放置1000小时后,仍保留其初始效率的91%,在35°C下最大功率点(MPP)跟踪500小时后,仍保留95%。多功能偶极分子的应用为高性能和长期稳定的钙钛矿器件开辟了新途径。