Suppr超能文献

使用2-氯肉桂酸实现高效稳定的钙钛矿太阳能电池的缺陷靶向修复

Defect-Targeted Repair for Efficient and Stable Perovskite Solar Cells Using 2-Chlorocinnamic Acid.

作者信息

Yang Zhichun, Li Mengyu, Chen Jinyan, Ahmad Waqar, Zhang Guofeng, Qin Chengbing, Xiao Liantuan, Jia Suotang

机构信息

State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China.

Department of Physics, Qilu Institute of Technology, Jinan 250200, China.

出版信息

Nanomaterials (Basel). 2025 Aug 12;15(16):1229. doi: 10.3390/nano15161229.

Abstract

Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose a defect-targeted passivation strategy using 2-chlorocinnamic acid (2-Cl) to simultaneously enhance the efficiency and stability of perovskite solar cells (PSCs). The crystallization kinetics, film morphology, and optical and electronic properties of the used formamidinium-cesium lead halide (FACsPb(IBr), FACs) absorber were modulated and systematically investigated by various characterizations. Mechanistically, the carbonyl group in 2-Cl coordinates with undercoordinated Pb ions, while the chlorine atom forms Pb-Cl bonds, effectively passivating the surface and interfacial defects. The optimized FACs perovskite film was incorporated into inverted (p-i-n) PSCs with a typical architecture of ITO/NiO/PTAA/AlO/FACs/PEAI/PCBM/BCP/Ag. The optimal device delivers a champion power conversion efficiency (PCE) of 22.58% with an open-circuit voltage of 1.14 V and a fill factor of 82.8%. Furthermore, the unencapsulated devices retain 90% of their initial efficiency after storage in ambient air for 30 days and 83% of their original PCE after stress under 1 sun illumination with maximum power point tracking at 50 °C in a N environment, demonstrating the practical potential of dual-site molecular passivation for durable perovskite photovoltaics.

摘要

金属卤化物钙钛矿已成为一种用于高效低成本光伏技术的有前景的半导体。然而,在加工过程中形成的多晶钙钛矿薄膜的表面和晶界处的缺陷极大地限制了它们的性能和长期稳定性。在此,我们提出一种使用2-氯肉桂酸(2-Cl)的缺陷靶向钝化策略,以同时提高钙钛矿太阳能电池(PSC)的效率和稳定性。通过各种表征手段对所使用的甲脒铯铅卤化物(FACsPb(IBr),FACs)吸收体的结晶动力学、薄膜形态以及光学和电子性质进行了调制和系统研究。从机理上讲,2-Cl中的羰基与配位不足的Pb离子配位,而氯原子形成Pb-Cl键,有效地钝化了表面和界面缺陷。将优化后的FACs钙钛矿薄膜整合到具有ITO/NiO/PTAA/AlO/FACs/PEAI/PCBM/BCP/Ag典型结构的倒置(p-i-n)PSC中。最优器件的最高功率转换效率(PCE)为22.58%,开路电压为1.14 V,填充因子为82.8%。此外未封装的器件在环境空气中储存30天后仍保留其初始效率的90%,在N环境中50°C下最大功率点跟踪的1个太阳光照应力后仍保留其原始PCE的83%,证明了双位点分子钝化对于耐用钙钛矿光伏的实际潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dee/12388658/d18b234a3959/nanomaterials-15-01229-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验