School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, Hebei, 050043, China.
Small. 2024 Oct;20(42):e2401396. doi: 10.1002/smll.202401396. Epub 2024 Jul 7.
DNA nanostructures have been utilized to study biological mechanical processes and construct artificial nanosystems. Many application scenarios necessitate nanodevices able to robustly generate large single molecular forces. However, most existing dynamic DNA nanostructures are triggered by probabilistic hybridization reactions between spatially separated DNA strands, which only non-deterministically generate relatively small compression forces (≈0.4 piconewtons (pN)). Here, an intercalator-triggered dynamic DNA origami nanostructure is developed, where large amounts of local binding reactions between intercalators and the nanostructure collectively lead to the robust generation of relatively large compression forces (≈11.2 pN). Biomolecular loads with different stiffnesses, 3, 4, and 6-helix DNA bundles are efficiently bent by the compression forces. This work provides a robust and powerful force-generation tool for building highly chemo-mechanically coupled molecular machines in synthetic nanosystems.
DNA 纳米结构已被用于研究生物力学过程和构建人工纳米系统。许多应用场景需要能够稳健地产生大的单分子力的纳米器件。然而,大多数现有的动态 DNA 纳米结构是由空间分离的 DNA 链之间的概率杂交反应触发的,这只能非确定性地产生相对较小的压缩力(≈0.4 皮牛顿(pN))。在这里,开发了一种嵌入剂触发的动态 DNA 折纸纳米结构,其中嵌入剂与纳米结构之间的大量局部结合反应共同导致相对较大的压缩力(≈11.2 pN)的稳健产生。不同刚度的生物分子负载物,3、4 和 6 螺旋 DNA 束,都可以被压缩力有效地弯曲。这项工作为在合成纳米系统中构建高度化学机械耦联的分子机器提供了一个强大的力产生工具。