Ghoudi Arafet, Auguste Sandy, Lhoste Jérome, Rekik Walid, Ghalla Houcine, Khirouni Kamel, Aydi Abdelhedi, Oueslati Abderrazek
Laboratoire de Caractérisation Spectroscopique et Optique des Matériaux, Faculté des Sciences, Université de Sfax, B. P. 1171, 3000 Sfax, Tunisia.
Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
ACS Omega. 2024 Jun 20;9(26):28339-28353. doi: 10.1021/acsomega.4c01997. eCollection 2024 Jul 2.
Organic-inorganic hybrid materials have recently found a vast variety of applications in the fields of energy storage and microelectronics due to their outstanding electric and dielectric characteristics, including high dielectric constant, low conductivity, and low dielectric loss. However, despite the promising properties of these materials, there remains a need to explore novel compounds with improved performance for practical applications. In this research paper, the focus is on addressing this scientific challenge by synthesizing and characterizing the new-centrosymmetric (CHN)[CdBr] crystal. This compound offers potential advancements in energy storage technologies and microelectronics due to its unique structural and electronic properties. The chemical mentioned above crystallizes in the monoclinic system, and its protonated amine (CHN) and isolated anion [CdBr] are bound by C-H···π and N-H···Br hydrogen bonds to form its zero-dimensional structure. Through optical absorption analysis, the semiconductor nature of the material is verified, showcasing a band gap of around 2.9 eV. Furthermore, an in-depth examination of Nyquist plots reveals the material's electrical characteristics' sensitivity to frequency and temperature variations. By applying Jonscher's power law to analyze ac conductivity plots, it is observed that the variation in the exponent "s" accurately characterizes the conduction mechanism, aligning with CBH models. The compound exhibits low dielectric loss values and a high permittivity value (ε ∼ 10), making it a promising candidate for energy storage applications. By managing the scientific challenge of improving material performance for energy storage and microelectronics, this research contributes to advancing the field and opens avenues for further exploration and application of organic-inorganic hybrid materials.
由于其优异的电学和介电特性,包括高介电常数、低电导率和低介电损耗,有机-无机杂化材料最近在能量存储和微电子领域得到了广泛应用。然而,尽管这些材料具有良好的性能,但仍需要探索具有更高性能的新型化合物以用于实际应用。在这篇研究论文中,重点是通过合成和表征新型中心对称的(CHN)[CdBr]晶体来应对这一科学挑战。由于其独特的结构和电子特性,该化合物,这种化合物在能量存储技术和微电子领域具有潜在的进展。上述化合物结晶于单斜晶系,其质子化胺(CHN)和孤立阴离子[CdBr]通过C-H···π和N-H···Br氢键结合形成其零维结构。通过光吸收分析,验证了该材料的半导体性质,其带隙约为2.9 eV。此外,对奈奎斯特图的深入研究揭示了该材料的电学特性对频率和温度变化的敏感性。通过应用琼舍尔幂定律分析交流电导率图,观察到指数“s”的变化准确地表征了传导机制,与CBH模型一致。该化合物表现出低介电损耗值和高介电常数(ε~10),使其成为能量存储应用的有前途的候选材料。通过应对提高能量存储和微电子材料性能这一科学挑战,本研究为该领域的发展做出了贡献,并为有机-无机杂化材料的进一步探索和应用开辟了道路。