Liu Juan, Qing Yujia, Zhou Linna, Chen Shaomeng, Li Xuefei, Zhang Yujia, Bayley Hagan
School of Pharmaceutical Sciences Shenzhen, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
Angew Chem Int Ed Engl. 2024 Oct 24;63(44):e202408665. doi: 10.1002/anie.202408665. Epub 2024 Sep 2.
Enzyme-enabled biobatteries are promising green options to power the next-generation of bioelectronics and implantable medical devices. However, existing power sources based on enzymatic biofuel chemistry exhibit limited scale-down feasibility due to the solid and bulky battery structures. Therefore, miniature and soft alternatives are needed for integration with implants and tissues. Here, a biobattery built from nanolitre droplets, fuelled by the enzyme-enabled oxidation of reduced nicotinamide adenine dinucleotide, generates electrical outputs and powers ion fluxes in droplet networks. Optimization of the droplet biobattery components ensures a stable output current of ~13,000 pA for over 24 h, representing a more than 600-fold increase in output over previous approaches, including light-driven processes. The enzyme-enabled droplet biobattery opens new avenues in bioelectronics and bioiontronics, exemplified by tasks such as the ability to drive chemical signal transmission in integrated synthetic tissues.
基于酶的生物电池是为下一代生物电子学和植入式医疗设备供电的有前景的绿色选择。然而,由于电池结构坚固且体积庞大,现有的基于酶促生物燃料化学的电源在缩小规模方面可行性有限。因此,需要微型和柔软的替代方案来与植入物和组织集成。在此,一种由纳升液滴构建的生物电池,由还原型烟酰胺腺嘌呤二核苷酸的酶促氧化提供燃料,可产生电输出并为液滴网络中的离子通量提供动力。对液滴生物电池组件的优化可确保在超过24小时的时间内稳定输出电流约为13,000 pA,这比以前的方法(包括光驱动过程)的输出增加了600多倍。基于酶的液滴生物电池为生物电子学和生物离子学开辟了新途径,例如能够在集成合成组织中驱动化学信号传输等任务就是例证。