Suppr超能文献

葡萄、甜橙和玉米中单一步骤甲基苯甲酰氨生物合成的分子基础。

Molecular basis of one-step methyl anthranilate biosynthesis in grapes, sweet orange, and maize.

机构信息

Department of Biology, Williams College, Williamstown, Massachusetts, 01267, USA.

Department of Chemistry, Williams College, Williamstown, Massachusetts, 01267, USA.

出版信息

Plant J. 2024 Sep;119(5):2363-2374. doi: 10.1111/tpj.16922. Epub 2024 Jul 8.

Abstract

Plants synthesize an array of volatile compounds, many of which serve ecological roles in attracting pollinators, deterring herbivores, and communicating with their surroundings. Methyl anthranilate (MeAA) is an anti-herbivory defensive volatile responsible for grape aroma that is emitted by several agriculturally relevant plants, including citrus, grapes, and maize. Unlike maize, which uses a one-step anthranilate methyltransferase (AAMT), grapes have been thought to use a two-step pathway for MeAA biosynthesis. By mining available transcriptomics data, we identified two AAMTs in Vitis vinifera (wine grape), as well as one ortholog in "Concord" grape. Many angiosperms methylate the plant hormone salicylic acid (SA) to produce methyl salicylate, which acts as a plant-to-plant communication molecule. Because the Citrus sinensis (sweet orange) SA methyltransferase can methylate both anthranilate (AA) and SA, we used this enzyme to examine the molecular basis of AA activity by introducing rational mutations, which identified several active site residues that increase activity with AA. Reversing this approach, we introduced mutations that imparted activity with SA in the maize AAMT, which uncovered different active site residues from those in the citrus enzyme. Sequence and phylogenetic analysis revealed that one of the Vitis AAMTs shares an ancestor with jasmonic acid methyltransferases, similar to the AAMT from strawberry (Frageria sp.). Collectively, these data demonstrate the molecular mechanisms underpinning AA activity across methyltransferases and identify one-step enzymes by which grapes synthesize MeAA.

摘要

植物合成了一系列挥发性化合物,其中许多在吸引传粉者、阻止食草动物和与周围环境交流方面发挥着生态作用。甲基邻氨基苯甲酸(MeAA)是一种抗食草防御性挥发性物质,负责葡萄的香气,它由几种与农业相关的植物释放,包括柑橘、葡萄和玉米。与使用一步法邻氨基苯甲酸甲基转移酶(AAMT)的玉米不同,人们一直认为葡萄使用两步法合成 MeAA。通过挖掘可用的转录组学数据,我们在葡萄属(酿酒葡萄)中鉴定出了两个 AAMTs,以及“康科德”葡萄中的一个同源物。许多被子植物将植物激素水杨酸(SA)甲基化生成甲基水杨酸,作为植物间的通讯分子。因为柑橘 SA 甲基转移酶可以甲基化邻氨基苯甲酸(AA)和 SA,我们使用这种酶通过引入合理的突变来研究 AA 活性的分子基础,从而确定了几个增加 AA 活性的活性位点残基。反过来,我们引入了在玉米 AAMT 中赋予 SA 活性的突变,这揭示了与柑橘酶不同的活性位点残基。序列和系统发育分析表明,葡萄的一个 AAMT 与茉莉酸甲基转移酶有一个共同的祖先,类似于草莓( Fragaria sp.)的 AAMT。总的来说,这些数据证明了 AA 活性在甲基转移酶中的分子机制,并确定了葡萄合成 MeAA 的一步法酶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验