Suppr超能文献

用于缺失模态插补的统一多模态图像合成

Unified Multi-Modal Image Synthesis for Missing Modality Imputation.

作者信息

Zhang Yue, Peng Chengtao, Wang Qiuli, Song Dan, Li Kaiyan, Kevin Zhou S

出版信息

IEEE Trans Med Imaging. 2025 Jan;44(1):4-18. doi: 10.1109/TMI.2024.3424785. Epub 2025 Jan 2.

Abstract

Multi-modal medical images provide complementary soft-tissue characteristics that aid in the screening and diagnosis of diseases. However, limited scanning time, image corruption and various imaging protocols often result in incomplete multi-modal images, thus limiting the usage of multi-modal data for clinical purposes. To address this issue, in this paper, we propose a novel unified multi-modal image synthesis method for missing modality imputation. Our method overall takes a generative adversarial architecture, which aims to synthesize missing modalities from any combination of available ones with a single model. To this end, we specifically design a Commonality- and Discrepancy-Sensitive Encoder for the generator to exploit both modality-invariant and specific information contained in input modalities. The incorporation of both types of information facilitates the generation of images with consistent anatomy and realistic details of the desired distribution. Besides, we propose a Dynamic Feature Unification Module to integrate information from a varying number of available modalities, which enables the network to be robust to random missing modalities. The module performs both hard integration and soft integration, ensuring the effectiveness of feature combination while avoiding information loss. Verified on two public multi-modal magnetic resonance datasets, the proposed method is effective in handling various synthesis tasks and shows superior performance compared to previous methods.

摘要

多模态医学图像提供了互补的软组织特征,有助于疾病的筛查和诊断。然而,有限的扫描时间、图像损坏和各种成像协议常常导致多模态图像不完整,从而限制了多模态数据在临床中的应用。为了解决这个问题,在本文中,我们提出了一种用于缺失模态插补的新颖统一多模态图像合成方法。我们的方法总体上采用生成对抗架构,旨在使用单个模型从可用模态的任何组合中合成缺失模态。为此,我们专门为生成器设计了一个共性和差异敏感编码器,以利用输入模态中包含的模态不变信息和特定信息。这两种类型信息的结合有助于生成具有一致解剖结构和所需分布的逼真细节的图像。此外,我们提出了一个动态特征统一模块来整合来自不同数量可用模态的信息,这使得网络对随机缺失的模态具有鲁棒性。该模块执行硬整合和软整合,确保特征组合的有效性,同时避免信息丢失。在两个公共多模态磁共振数据集上进行验证,结果表明所提出的方法在处理各种合成任务方面是有效的,并且与以前的方法相比表现出优越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验