文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Multimodal integration strategies for clinical application in oncology.

作者信息

Zhang Baoyi, Wan Zhuoya, Luo Yige, Zhao Xi, Samayoa Josue, Zhao Weilong, Wu Si

机构信息

AbbVie Bay Area, South San Francisco, CA, United States.

AbbVie, Inc., North Chicago, IL, United States.

出版信息

Front Pharmacol. 2025 Aug 20;16:1609079. doi: 10.3389/fphar.2025.1609079. eCollection 2025.


DOI:10.3389/fphar.2025.1609079
PMID:40910005
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12405423/
Abstract

In clinical practice, a variety of techniques are employed to generate diverse data types for each cancer patient. These data types, spanning clinical, genomics, imaging, and other modalities, exhibit significant differences and possess distinct data structures. Therefore, most current analyses focus on a single data modality, limiting the potential of fully utilizing all available data and providing comprehensive insights. Artificial intelligence (AI) methods, adept at handling complex data structures, offer a powerful approach to efficiently integrate multimodal data. The insights derived from such models may ultimately expedite advancements in patient diagnosis, prognosis, and treatment responses. Here, we provide an overview of current advanced multimodal integration strategies and the related clinical potential in oncology field. We start from the key processing methods for single data modalities such as multi-omics, imaging data, and clinical notes. We then include diverse AI methods, covering traditional machine learning, representation learning, and vision language model, tailored to each distinct data modality. We further elaborate on popular multimodal integration strategies and discuss the related strength and weakness. Finally, we explore potential clinical applications including early detection/diagnosis, biomarker discovery, and prediction of clinical outcome. Additionally, we discuss ongoing challenges and outline potential future directions in the field.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cd/12405423/d682e8240c62/fphar-16-1609079-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cd/12405423/63469dde4687/fphar-16-1609079-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cd/12405423/d682e8240c62/fphar-16-1609079-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cd/12405423/63469dde4687/fphar-16-1609079-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cd/12405423/d682e8240c62/fphar-16-1609079-g002.jpg

相似文献

[1]
Multimodal integration strategies for clinical application in oncology.

Front Pharmacol. 2025-8-20

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.

Alzheimers Dement. 2021-4

[4]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[5]
Plug-and-play use of tree-based methods: consequences for clinical prediction modeling.

J Clin Epidemiol. 2025-8

[6]
Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review.

Ann Oncol. 2024-1

[7]
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging.

J Med Imaging (Bellingham). 2025-3

[8]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[9]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[10]
Short-Term Memory Impairment

2025-1

本文引用的文献

[1]
Towards generalist foundation model for radiology by leveraging web-scale 2D&3D medical data.

Nat Commun. 2025-8-23

[2]
Advancing Precision Oncology Through Modeling of Longitudinal and Multimodal Data.

IEEE Rev Biomed Eng. 2025-7-3

[3]
A review on generative AI models for synthetic medical text, time series, and longitudinal data.

NPJ Digit Med. 2025-5-15

[4]
Deep Learning-Powered Whole Slide Image Analysis in Cancer Pathology.

Lab Invest. 2025-4-28

[5]
Zero-shot evaluation reveals limitations of single-cell foundation models.

Genome Biol. 2025-4-18

[6]
Foundation Models for Histopathology-Fanfare or Flair.

Mayo Clin Proc Digit Health. 2024-3-5

[7]
Multi-modal Longitudinal Representation Learning for Predicting Neoadjuvant Therapy Response in Breast Cancer Treatment.

IEEE J Biomed Health Inform. 2025-2-11

[8]
Multimodal data integration in early-stage breast cancer.

Breast. 2025-4

[9]
Foundation Models in Radiology: What, How, Why, and Why Not.

Radiology. 2025-2

[10]
Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence.

Nat Cancer. 2025-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索