Suppr超能文献

基于无细胞游离 DNA 全基因组甲基化测序的全基因组多模态分析用于无创性食管癌检测。

Genome-Scale Multimodal Analysis of Cell-Free DNA Whole-Methylome Sequencing for Noninvasive Esophageal Cancer Detection.

机构信息

Genecast Biotechnology Co, Ltd, Wuxi, Jiangsu, China.

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China.

出版信息

JCO Precis Oncol. 2024 Jun;8:e2400111. doi: 10.1200/PO.24.00111.

Abstract

PURPOSE

Simultaneous profiling of cell-free DNA (cfDNA) methylation and fragmentation features to improve the performance of cfDNA-based cancer detection is technically challenging. We developed a method to comprehensively analyze multimodal cfDNA genomic features for more sensitive esophageal squamous cell carcinoma (ESCC) detection.

MATERIALS AND METHODS

Enzymatic conversion-mediated whole-methylome sequencing was applied to plasma cfDNA samples extracted from 168 patients with ESCC and 251 noncancer controls. ESCC characteristic cfDNA methylation, fragmentation, and copy number signatures were analyzed both across the genome and at accessible cis-regulatory DNA elements. To distinguish ESCC from noncancer samples, a first-layer classifier was developed for each feature type, the prediction results of which were incorporated to construct the second-layer ensemble model.

RESULTS

ESCC plasma genome displayed global hypomethylation, altered fragmentation size, and chromosomal copy number alteration. Methylation and fragmentation changes at cancer tissue-specific accessible cis-regulatory DNA elements were also observed in ESCC plasma. By integrating multimodal genomic features for ESCC detection, the ensemble model showed improved performance over individual modalities. In the training cohort with a specificity of 99.2%, the detection sensitivity was 81.0% for all stages and 70.0% for stage 0-II. Consistent performance was observed in the test cohort with a specificity of 98.4%, an all-stage sensitivity of 79.8%, and a stage 0-II sensitivity of 69.0%. The performance of the classifier was associated with the disease stage, irrespective of clinical covariates.

CONCLUSION

This study comprehensively profiles the epigenomic landscape of ESCC plasma and provides a novel noninvasive and sensitive ESCC detection approach with genome-scale multimodal analysis.

摘要

目的

同时分析游离 DNA(cfDNA)甲基化和片段特征以提高基于 cfDNA 的癌症检测性能在技术上具有挑战性。我们开发了一种综合分析多模态 cfDNA 基因组特征的方法,以提高对食管鳞状细胞癌(ESCC)的检测灵敏度。

材料与方法

采用酶促转化介导的全甲基化组测序技术,对 168 例 ESCC 患者和 251 例非癌症对照的血浆 cfDNA 样本进行分析。分析了整个基因组和可及顺式调控 DNA 元件上的 ESCC 特征性 cfDNA 甲基化、片段化和拷贝数特征。为了将 ESCC 与非癌症样本区分开,为每种特征类型开发了一个第一层分类器,将其预测结果合并到第二层集成模型中。

结果

ESCC 血浆基因组显示出全局低甲基化、片段大小改变和染色体拷贝数改变。还观察到 ESCC 血浆中癌症组织特异性可及顺式调控 DNA 元件的甲基化和片段化改变。通过整合 ESCC 检测的多模态基因组特征,集成模型的性能优于单个模态。在特异性为 99.2%的训练队列中,所有阶段的检测灵敏度为 81.0%,0-II 期的检测灵敏度为 70.0%。在特异性为 98.4%的测试队列中观察到一致的性能,所有阶段的敏感性为 79.8%,0-II 期的敏感性为 69.0%。分类器的性能与疾病阶段相关,与临床协变量无关。

结论

本研究全面描绘了 ESCC 血浆的表观基因组图谱,并提供了一种新的非侵入性和敏感的 ESCC 检测方法,具有全基因组多模态分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验