Istanbul Technical University, Department of Chemical Engineering, Istanbul, 34469, Turkey.
Istanbul Technical University, Computational Science and Engineering Division, Informatics Institute, Istanbul, 34469, Turkey.
J Mol Graph Model. 2024 Sep;131:108817. doi: 10.1016/j.jmgm.2024.108817. Epub 2024 Jul 3.
The global antibiotic resistance problem necessitates fast and effective approaches to finding novel inhibitors to treat bacterial infections. In this study, we propose a computational workflow to identify plausible high-affinity compounds from FDA-approved, investigational, and experimental libraries for the decoding center on the small subunit 30S of the E. coli ribosome. The workflow basically consists of two molecular docking calculations on the intact 30S, followed by molecular dynamics (MD) simulations coupled with MM-GBSA calculations on a truncated ribosome structure. The parameters used in the molecular docking suits, Glide and AutoDock Vina, as well as in the MD simulations with Desmond were carefully adjusted to obtain expected interactions for the ligand-rRNA complexes. A filtering procedure was followed, considering a fingerprint based on aminoglycoside's binding site on the 30S to obtain seven hit compounds either with different clinical usages or aminoglycoside derivatives under investigation, suggested for in vitro studies. The detailed workflow developed in this study promises an effective and fast approach for the estimation of binding free energies of large protein-RNA and ligand complexes.
全球抗生素耐药性问题需要快速有效的方法来寻找新型抑制剂来治疗细菌感染。在这项研究中,我们提出了一种计算工作流程,用于从 FDA 批准、研究中和实验性文库中识别可能具有高亲和力的化合物,这些化合物针对大肠杆菌核糖体小亚基 30S 的解码中心。该工作流程基本上包括两次对完整 30S 的分子对接计算,然后是结合 MM-GBSA 计算的分子动力学 (MD) 模拟,使用的参数包括 Glide 和 AutoDock Vina,以及 Desmond 的 MD 模拟,这些参数经过仔细调整,以获得配体-rRNA 复合物的预期相互作用。我们遵循了一种过滤程序,考虑了基于 30S 上氨基糖苷结合位点的指纹,以获得七种具有不同临床用途或正在研究的氨基糖苷衍生物的命中化合物,这些化合物被建议进行体外研究。本研究中开发的详细工作流程有望为估计大蛋白-RNA 和配体复合物的结合自由能提供一种有效和快速的方法。