Suppr超能文献

MDFit:自动化分子模拟工作流程可实现配体-蛋白质动力学的高通量评估。

MDFit: automated molecular simulations workflow enables high throughput assessment of ligands-protein dynamics.

机构信息

Molecular Structure & Design, Bristol Myers Squibb, Princeton, NJ, 08540, USA.

Biocon Bristol Myers Squibb R&D Centre, Bangalore, 560099, Karnataka, India.

出版信息

J Comput Aided Mol Des. 2024 Jul 17;38(1):24. doi: 10.1007/s10822-024-00564-2.

Abstract

Molecular dynamics (MD) simulation is a powerful tool for characterizing ligand-protein conformational dynamics and offers significant advantages over docking and other rigid structure-based computational methods. However, setting up, running, and analyzing MD simulations continues to be a multi-step process making it cumbersome to assess a library of ligands in a protein binding pocket using MD. We present an automated workflow that streamlines setting up, running, and analyzing Desmond MD simulations for protein-ligand complexes using machine learning (ML) models. The workflow takes a library of pre-docked ligands and a prepared protein structure as input, sets up and runs MD with each protein-ligand complex, and generates simulation fingerprints for each ligand. Simulation fingerprints (SimFP) capture protein-ligand compatibility, including stability of different ligand-pocket interactions and other useful metrics that enable easy rank-ordering of the ligand library for pocket optimization. SimFPs from a ligand library are used to build & deploy ML models that predict binding assay outcomes and automatically infer important interactions. Unlike relative free-energy methods that are constrained to assess ligands with high chemical similarity, ML models based on SimFPs can accommodate diverse ligand sets. We present two case studies on how SimFP helps delineate structure-activity relationship (SAR) trends and explain potency differences across matched-molecular pairs of (1) cyclic peptides targeting PD-L1 and (2) small molecule inhibitors targeting CDK9.

摘要

分子动力学(MD)模拟是一种用于描述配体-蛋白质构象动力学的强大工具,与对接和其他基于刚性结构的计算方法相比具有显著优势。然而,设置、运行和分析 MD 模拟仍然是一个多步骤的过程,这使得使用 MD 来评估蛋白质结合口袋中的配体库变得繁琐。我们提出了一种自动化工作流程,该流程使用机器学习(ML)模型简化了用于蛋白质-配体复合物的 Desmond MD 模拟的设置、运行和分析。该工作流程以预对接的配体库和准备好的蛋白质结构作为输入,为每个蛋白质-配体复合物设置和运行 MD,并为每个配体生成模拟指纹。模拟指纹(SimFP)捕捉蛋白质-配体的兼容性,包括不同配体-口袋相互作用的稳定性和其他有用的指标,这些指标可以方便地对配体库进行口袋优化的排序。从配体库中提取的 SimFPs 用于构建和部署 ML 模型,这些模型可以预测结合测定结果,并自动推断重要的相互作用。与相对自由能方法不同,后者仅限于评估具有高化学相似性的配体,基于 SimFPs 的 ML 模型可以适应不同的配体集。我们介绍了两个案例研究,说明了 SimFP 如何帮助描绘结构-活性关系(SAR)趋势,并解释了针对(1)靶向 PD-L1 的环状肽和(2)靶向 CDK9 的小分子抑制剂的匹配分子对之间的效力差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验