State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, PR China.
Int J Biol Macromol. 2024 Nov;279(Pt 3):133245. doi: 10.1016/j.ijbiomac.2024.133245. Epub 2024 Jul 6.
Late embryogenesis abundant (LEA) proteins play a crucial role in protecting cells from stress, making them potential contributors to abiotic stress tolerance. This study focuses on apricot (P. armeniaca L. × P. sibirica L.), where a comprehensive genome-wide analysis identified 54 LEA genes, categorized into eight subgroups based on phylogenetic relationships. Synteny analysis revealed 14 collinear blocks containing LEA genes between P. armeniaca × P. sibirica and Arabidopsis thaliana, with an additional 9 collinear blocks identified between P. armeniaca × P. sibirica and poplar. Examination of gene structure and conserved motifs indicated that these subgroups exhibit consistent exon-intron patterns and shared motifs. The expansion and duplication of LEA genes in P. armeniaca × P. sibirica were driven by whole-genome duplication (WGD), segmental duplication, and tandem duplication events. Expression analysis, utilizing RNA-seq data and quantitative real-time RT-PCR (qRT-PCR), indicated induction of PasLEA2-20, PasLEA3-2, PasLEA6-1, Pasdehydrin-3, and Pasdehydrin-5 in flower buds during dormancy and sprouting phases. Coexpression network analysis linked LEA genes with 15 cold-resistance genes. Remarkably, during the four developmental stages of flower buds in P. armeniaca × P. sibirica - physiological dormancy, ecological dormancy, sprouting period, and germination stage - the expression patterns of all PasLEAs coexpressed with cold stress-related genes remained consistent. Protein-protein interaction networks, established using Arabidopsis orthologs, emphasized connections between PasLEA proteins and cold resistance pathways. Overexpression of certain LEA genes in yeast and Arabidopsis conferred advantages under cold stress, including increased pod length, reduced bolting time and flowering time, improved survival and seed setting rates, elevated proline accumulation, and enhanced antioxidative enzymatic activities. Furthermore, these overexpressed plants exhibited upregulation of genes related to flower development and cold resistance. The Y1H assay confirmed that PasGBF4 and PasDOF3.5 act as upstream regulatory factors by binding to the promoter region of PasLEA3-2. PasDOF2.4, PasDnaJ2, and PasAP2 were also found to bind to the promoter of Pasdehydrin-3, regulating the expression levels of downstream genes. This comprehensive study explores the evolutionary relationships among PasLEA genes, protein interactions, and functional analyses during various stages of dormancy and sprouting in P. armeniaca × P. sibirica. It offers potential targets for enhancing cold resistance and manipulating flower bud dormancy in this apricot hybrid.
晚期胚胎丰富蛋白(LEA)在保护细胞免受压力方面起着至关重要的作用,使它们成为非生物胁迫耐受性的潜在贡献者。本研究聚焦于杏(P. armeniaca L. × P. sibirica L.),通过全面的全基因组分析,确定了 54 个 LEA 基因,根据系统发育关系分为八个亚组。共线性分析显示,在杏 × 西伯利亚李和拟南芥之间有 14 个含有 LEA 基因的共线性块,在杏 × 西伯利亚李和杨树之间有另外 9 个共线性块。对基因结构和保守基序的检查表明,这些亚组表现出一致的外显子-内含子模式和共享基序。杏 × 西伯利亚李中 LEA 基因的扩张和复制是由全基因组复制(WGD)、片段复制和串联复制事件驱动的。利用 RNA-seq 数据和定量实时 RT-PCR(qRT-PCR)进行的表达分析表明,在休眠和发芽阶段,PasLEA2-20、PasLEA3-2、PasLEA6-1、Pasdehydrin-3 和 Pasdehydrin-5 在花芽中诱导。共表达网络分析将 LEA 基因与 15 个抗寒基因联系起来。值得注意的是,在杏 × 西伯利亚李的四个花蕾发育阶段——生理休眠、生态休眠、发芽期和萌发期——所有与冷胁迫相关基因共表达的 PasLEAs 的表达模式保持一致。利用拟南芥同源物建立的蛋白质-蛋白质相互作用网络强调了 PasLEA 蛋白与冷抗性途径之间的联系。在酵母和拟南芥中过表达某些 LEA 基因在冷胁迫下赋予了优势,包括增加荚长度、减少抽薹时间和开花时间、提高存活率和结实率、增加脯氨酸积累和增强抗氧化酶活性。此外,这些过表达的植物表现出与花发育和抗冷性相关的基因上调。Y1H 测定证实,PasGBF4 和 PasDOF3.5 通过结合 PasLEA3-2 的启动子区域作为上游调节因子发挥作用。还发现 PasDOF2.4、PasDnaJ2 和 PasAP2 结合到 Pasdehydrin-3 的启动子上,调节下游基因的表达水平。这项全面的研究探讨了 PasLEA 基因在杏 × 西伯利亚李休眠和发芽各个阶段的进化关系、蛋白质相互作用和功能分析。它为增强这种杏杂交种的抗寒性和操纵花芽休眠提供了潜在的目标。