Suppr超能文献

嵌入凹形多孔碳中的高熵金属氮化物助力锂硫电池中的多硫化物转化

High-Entropy Metal Nitride Embedded in Concave Porous Carbon Enabling Polysulfide Conversion in Lithium-Sulfur Batteries.

作者信息

Wang Ruirui, Jiao Jihuang, Liu Da, He Yufei, Yang Yaxiong, Sun Dalin, Pan Honge, Fang Fang, Wu Renbing

机构信息

Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China.

Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China.

出版信息

Small. 2024 Nov;20(44):e2405148. doi: 10.1002/smll.202405148. Epub 2024 Jul 8.

Abstract

The practical implementation of lithium-sulfur batteries is severely hindered by the rapid capacity fading due to the solubility of the intermediate lithium polysulfides (LiPSs) and the sluggish redox kinetics. Herein, high-entropy metal nitride nanocrystals (HEMN) embedded within nitrogen-doped concave porous carbon (N-CPC) polyhedra are rationally designed as a sulfur host via a facile zeolitic imidazolate framework (ZIF)-driven adsorption-nitridation process toward this challenge. The configuration of high-entropy with incorporated metal manganese (Mn) and chromium (Cr) will optimize the d-band center of active sites with more electrons occupied in antibonding orbitals, thus promoting the adsorption and catalytic conversion of LiPSs. While the concave porous carbon not only accommodates the volume change upon the cycling processes but also physically confines and exposes active sites for accelerated sulfur redox reactions. As a result, the resultant HEMN/N-CPC composites-based sulfur cathode can deliver a high specific capacity of 1274 mAh g at 0.2 C and a low capacity decay rate of 0.044% after 1000 cycles at 1 C. Moreover, upon sulfur loading of 5.0 mg cm, the areal capacity of 5.0 mAh cm can still be achieved. The present work may provide a new avenue for the design of high-performance cathodes in Li-S batteries.

摘要

锂硫电池的实际应用受到严重阻碍,这是由于中间产物多硫化锂(LiPSs)的溶解性以及缓慢的氧化还原动力学导致的快速容量衰减。在此,通过简便的沸石咪唑酯骨架(ZIF)驱动的吸附 - 氮化过程,合理设计了嵌入氮掺杂凹形多孔碳(N - CPC)多面体中的高熵金属氮化物纳米晶体(HEMN)作为硫宿主,以应对这一挑战。包含金属锰(Mn)和铬(Cr)的高熵结构将优化活性位点的d带中心,使更多电子占据反键轨道,从而促进LiPSs的吸附和催化转化。而凹形多孔碳不仅能适应循环过程中的体积变化,还能物理限制并暴露活性位点以加速硫的氧化还原反应。结果,所得的基于HEMN/N - CPC复合材料的硫正极在0.2 C时可提供1274 mAh g的高比容量,在1 C下1000次循环后容量衰减率低至0.044%。此外,当硫负载量为5.0 mg cm时,仍可实现5.0 mAh cm的面积容量。本工作可能为锂硫电池中高性能正极的设计提供一条新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验