Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing, China.
Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.
Nat Commun. 2024 Jul 9;15(1):5769. doi: 10.1038/s41467-024-49924-4.
TWAS have shown great promise in extending GWAS loci to a functional understanding of disease mechanisms. In an effort to fully unleash the TWAS and GWAS information, we propose MTWAS, a statistical framework that partitions and aggregates cross-tissue and tissue-specific genetic effects in identifying gene-trait associations. We introduce a non-parametric imputation strategy to augment the inaccessible tissues, accommodating complex interactions and non-linear expression data structures across various tissues. We further classify eQTLs into cross-tissue eQTLs and tissue-specific eQTLs via a stepwise procedure based on the extended Bayesian information criterion, which is consistent under high-dimensional settings. We show that MTWAS significantly improves the prediction accuracy across all 47 tissues of the GTEx dataset, compared with other single-tissue and multi-tissue methods, such as PrediXcan, TIGAR, and UTMOST. Applying MTWAS to the DICE and OneK1K datasets with bulk and single-cell RNA sequencing data on immune cell types showcases consistent improvements in prediction accuracy. MTWAS also identifies more predictable genes, and the improvement can be replicated with independent studies. We apply MTWAS to 84 UK Biobank GWAS studies, which provides insights into disease etiology.
TWAS 在将 GWAS 基因座扩展到对疾病机制的功能理解方面显示出巨大的潜力。为了充分释放 TWAS 和 GWAS 的信息,我们提出了 MTWAS,这是一种统计框架,可在识别基因-性状关联时划分和汇总跨组织和组织特异性的遗传效应。我们引入了一种非参数推断策略来扩充无法获取的组织数据,适应各种组织中复杂的相互作用和非线性表达数据结构。我们进一步通过基于扩展贝叶斯信息准则的逐步过程将 eQTL 分类为跨组织 eQTL 和组织特异性 eQTL,在高维设置下是一致的。我们表明,与其他单组织和多组织方法(如 PrediXcan、TIGAR 和 UTMOST)相比,MTWAS 显著提高了 GTEx 数据集所有 47 个组织的预测准确性。将 MTWAS 应用于 DICE 和 OneK1K 数据集,这些数据集具有免疫细胞类型的批量和单细胞 RNA 测序数据,展示了预测准确性的一致提高。MTWAS 还确定了更可预测的基因,并且可以通过独立研究复制这种改进。我们将 MTWAS 应用于 84 项 UK Biobank GWAS 研究,这为疾病病因学提供了深入了解。