Ronchi Carlos, Haider Syed, Brisken Cathrin
ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK.
NPJ Breast Cancer. 2024 Jul 9;10(1):56. doi: 10.1038/s41523-024-00665-z.
Transcriptomics has revolutionized biomedical research and refined breast cancer subtyping and diagnostics. However, wider use in clinical practice is hampered for a number of reasons including the application of transcriptomic signatures as single sample predictors. Here, we present an embedding approach called EMBER that creates a unified space of 11,000 breast cancer transcriptomes and predicts phenotypes of transcriptomic profiles on a single sample basis. EMBER accurately captures the five molecular subtypes. Key biological pathways, such as estrogen receptor signaling, cell proliferation, DNA repair, and epithelial-mesenchymal transition determine sample position in the space. We validate EMBER in four independent patient cohorts and show with samples from the window trial, POETIC, that it captures clinical responses to endocrine therapy and identifies increased androgen receptor signaling and decreased TGFβ signaling as potential mechanisms underlying intrinsic therapy resistance. Of direct clinical importance, we show that the EMBER-based estrogen receptor (ER) signaling score is superior to the immunohistochemistry (IHC) based ER index used in current clinical practice to select patients for endocrine therapy. As such, EMBER provides a calibration and reference tool that paves the way for using RNA-seq as a standard diagnostic and predictive tool for ER+ breast cancer.
转录组学彻底改变了生物医学研究,并完善了乳腺癌的亚型分类和诊断方法。然而,由于多种原因,包括将转录组特征用作单样本预测指标,其在临床实践中的广泛应用受到了阻碍。在此,我们提出一种名为EMBER的嵌入方法,该方法创建了一个包含11000个乳腺癌转录组的统一空间,并在单样本基础上预测转录组图谱的表型。EMBER能够准确捕捉五种分子亚型。关键的生物学途径,如雌激素受体信号传导、细胞增殖、DNA修复和上皮-间质转化,决定了样本在该空间中的位置。我们在四个独立的患者队列中验证了EMBER,并通过窗口试验POETIC的样本表明,它能够捕捉内分泌治疗的临床反应,并确定雄激素受体信号增加和转化生长因子β信号减少是内在治疗耐药性的潜在机制。具有直接临床重要性的是,我们表明基于EMBER的雌激素受体(ER)信号评分优于当前临床实践中用于选择内分泌治疗患者的基于免疫组织化学(IHC)的ER指数。因此,EMBER提供了一种校准和参考工具,为将RNA测序用作雌激素受体阳性乳腺癌的标准诊断和预测工具铺平了道路。