Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan.
Department of Nephrology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan.
Sci Rep. 2024 Jul 9;14(1):15775. doi: 10.1038/s41598-024-66814-3.
A three-dimensional convolutional neural network model was developed to classify the severity of chronic kidney disease (CKD) using magnetic resonance imaging (MRI) Dixon-based T1-weighted in-phase (IP)/opposed-phase (OP)/water-only (WO) imaging. Seventy-three patients with severe renal dysfunction (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73 m, CKD stage G4-5); 172 with moderate renal dysfunction (30 ≤ eGFR < 60 mL/min/1.73 m, CKD stage G3a/b); and 76 with mild renal dysfunction (eGFR ≥ 60 mL/min/1.73 m, CKD stage G1-2) participated in this study. The model was applied to the right, left, and both kidneys, as well as to each imaging method (T1-weighted IP/OP/WO images). The best performance was obtained when using bilateral kidneys and IP images, with an accuracy of 0.862 ± 0.036. The overall accuracy was better for the bilateral kidney models than for the unilateral kidney models. Our deep learning approach using kidney MRI can be applied to classify patients with CKD based on the severity of kidney disease.
使用磁共振成像(MRI)基于 Dixon 的 T1 加权同相位(IP)/反相位(OP)/纯水(WO)成像,开发了一个三维卷积神经网络模型,用于对慢性肾脏病(CKD)的严重程度进行分类。73 名严重肾功能障碍患者(估算肾小球滤过率[eGFR] < 30 mL/min/1.73 m,CKD 阶段 G4-5);172 名中度肾功能障碍患者(30 ≤ eGFR < 60 mL/min/1.73 m,CKD 阶段 G3a/b);和 76 名轻度肾功能障碍患者(eGFR ≥ 60 mL/min/1.73 m,CKD 阶段 G1-2)参与了这项研究。该模型应用于右肾、左肾和双肾,以及每种成像方法(T1 加权 IP/OP/WO 图像)。当使用双侧肾脏和 IP 图像时,获得了最佳性能,准确率为 0.862 ± 0.036。双侧肾脏模型的总体准确率优于单侧肾脏模型。我们使用肾 MRI 的深度学习方法可用于根据肾脏疾病的严重程度对 CKD 患者进行分类。