Suppr超能文献

基于人工智能的肾脏增强 CT 图像分割用于慢性肾脏病的定量评估。

AI-based segmentation of renal enhanced CT images for quantitative evaluate of chronic kidney disease.

机构信息

Department of Radiology, Ningbo Yinzhou Second Hospital, Ningbo, China.

Department of Nephrology, Ningbo Yinzhou Second Hospital, Ningbo, China.

出版信息

Sci Rep. 2024 Jul 23;14(1):16890. doi: 10.1038/s41598-024-67658-7.

Abstract

To quantitatively evaluate chronic kidney disease (CKD), a deep convolutional neural network-based segmentation model was applied to renal enhanced computed tomography (CT) images. A retrospective analysis was conducted on a cohort of 100 individuals diagnosed with CKD and 90 individuals with healthy kidneys, who underwent contrast-enhanced CT scans of the kidneys or abdomen. Demographic and clinical data were collected from all participants. The study consisted of two distinct stages: firstly, the development and validation of a three-dimensional (3D) nnU-Net model for segmenting the arterial phase of renal enhanced CT scans; secondly, the utilization of the 3D nnU-Net model for quantitative evaluation of CKD. The 3D nnU-Net model achieved a mean Dice Similarity Coefficient (DSC) of 93.53% for renal parenchyma and 81.48% for renal cortex. Statistically significant differences were observed among different stages of renal function for renal parenchyma volume (V), renal cortex volume (V), renal medulla volume (V), the CT values of renal parenchyma (Hu), the CT values of renal cortex (Hu), and the CT values of renal medulla (Hu) (F = 93.476, 144.918, 9.637, 170.533, 216.616, and 94.283; p < 0.001). Pearson correlation analysis revealed significant positive associations between glomerular filtration rate (eGFR) and V, V, V, Hu, Hu, and Hu (r = 0.749, 0.818, 0.321, 0.819, 0.820, and 0.747, respectively, all p < 0.001). Similarly, a negative correlation was observed between serum creatinine (Scr) levels and V, V, V, Hu, Hu, and Hu (r = - 0.759, - 0.777, - 0.420, - 0.762, - 0.771, and - 0.726, respectively, all p < 0.001). For predicting CKD in males, V had an area under the curve (AUC) of 0.726, p < 0.001; V, AUC 0.765, p < 0.001; V, AUC 0.578, p = 0.018; Hu, AUC 0.912, p < 0.001; Hu, AUC 0.952, p < 0.001; and Hu, AUC 0.772, p < 0.001 in males. In females, V had an AUC of 0.813, p < 0.001; V, AUC 0.851, p < 0.001; V, AUC 0.623, p = 0.060; Hu, AUC 0.904, p < 0.001; Hu, AUC 0.934, p < 0.001; and Hu, AUC 0.840, p < 0.001. The optimal cutoff values for predicting CKD in Hu are 99.9 Hu for males and 98.4 Hu for females, while in Hu are 120.1 Hu for males and 111.8 Hu for females. The kidney was effectively segmented by our AI-based 3D nnU-Net model for enhanced renal CT images. In terms of mild kidney injury, the CT values exhibited higher sensitivity compared to kidney volume. The correlation analysis revealed a stronger association between V, Hu, and Hu with renal function, while the association between V and Hu was weaker, and the association between V was the weakest. Particularly, Hu and Hu demonstrated significant potential in predicting renal function. For diagnosing CKD, it is recommended to set the threshold values as follows: Hu < 99.9 Hu and Hu < 120.1 Hu in males, and Hu < 98.4 Hu and Hu < 111.8 Hu in females.

摘要

为了定量评估慢性肾脏病(CKD),我们应用基于深度卷积神经网络的分割模型对肾脏增强 CT 图像进行分析。该研究对 100 名 CKD 患者和 90 名健康肾脏患者进行了回顾性分析,这些患者均接受了肾脏或腹部增强 CT 扫描。所有参与者的人口统计学和临床数据均被收集。研究分为两个阶段:首先,开发并验证了一种用于分割肾脏增强 CT 扫描动脉期的三维(3D)nnU-Net 模型;其次,利用 3D nnU-Net 模型对 CKD 进行定量评估。3D nnU-Net 模型对肾脏实质的平均 Dice 相似系数(DSC)为 93.53%,对肾脏皮质的 DSC 为 81.48%。不同肾功能阶段的肾脏实质体积(V)、肾脏皮质体积(V)、肾脏髓质体积(V)、肾脏实质 CT 值(Hu)、肾脏皮质 CT 值(Hu)和肾脏髓质 CT 值(Hu)存在统计学差异(F=93.476、144.918、9.637、170.533、216.616 和 94.283;p<0.001)。Pearson 相关性分析显示,肾小球滤过率(eGFR)与 V、V、V、Hu、Hu 和 Hu 之间存在显著正相关(r=0.749、0.818、0.321、0.819、0.820 和 0.747,均 p<0.001)。同样,血清肌酐(Scr)水平与 V、V、V、Hu、Hu 和 Hu 之间也存在负相关(r=-0.759、-0.777、-0.420、-0.762、-0.771 和-0.726,均 p<0.001)。在预测男性 CKD 方面,V 的曲线下面积(AUC)为 0.726,p<0.001;V 的 AUC 为 0.765,p<0.001;V 的 AUC 为 0.578,p=0.018;Hu 的 AUC 为 0.912,p<0.001;Hu 的 AUC 为 0.952,p<0.001;Hu 的 AUC 为 0.772,p<0.001。在女性中,V 的 AUC 为 0.813,p<0.001;V 的 AUC 为 0.851,p<0.001;V 的 AUC 为 0.623,p=0.060;Hu 的 AUC 为 0.904,p<0.001;Hu 的 AUC 为 0.934,p<0.001;Hu 的 AUC 为 0.840,p<0.001。预测 Hu 中 CKD 的最佳截断值为男性 99.9 Hu 和女性 98.4 Hu,而预测 Hu 中 CKD 的最佳截断值为男性 120.1 Hu 和女性 111.8 Hu。我们的 AI 基于 3D nnU-Net 的模型可有效地对增强肾 CT 图像中的肾脏进行分割。在轻度肾损伤方面,CT 值的敏感性高于肾脏体积。相关性分析显示,V、Hu 和 Hu 与肾功能的相关性更强,而 V 和 Hu 的相关性较弱,V 的相关性最弱。尤其是 Hu 和 Hu 在预测肾功能方面具有显著的潜力。诊断 CKD 时,建议将阈值设置为:男性 Hu<99.9 Hu 和 Hu<120.1 Hu,女性 Hu<98.4 Hu 和 Hu<111.8 Hu。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ee/11266695/81663869e564/41598_2024_67658_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验