Suppr超能文献

基于多分类模型的肾脏 MRI 纹理分析在肾功能障碍评估中的应用。

The utility of texture analysis of kidney MRI for evaluating renal dysfunction with multiclass classification model.

机构信息

Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan.

Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, Japan.

出版信息

Sci Rep. 2022 Aug 30;12(1):14776. doi: 10.1038/s41598-022-19009-7.

Abstract

We evaluated a multiclass classification model to predict estimated glomerular filtration rate (eGFR) groups in chronic kidney disease (CKD) patients using magnetic resonance imaging (MRI) texture analysis (TA). We identified 166 CKD patients who underwent MRI comprising Dixon-based T1-weighted in-phase (IP)/opposed-phase (OP)/water-only (WO) images, apparent diffusion coefficient (ADC) maps, and T2* maps. The patients were divided into severe, moderate, and control groups based on eGFR borderlines of 30 and 60 mL/min/1.73 m. After extracting 93 texture features (TFs), dimension reduction was performed using inter-observer reproducibility analysis and sequential feature selection (SFS) algorithm. Models were created using linear discriminant analysis (LDA); support vector machine (SVM) with linear, rbf, and sigmoid kernels; decision tree (DT); and random forest (RF) classifiers, with synthetic minority oversampling technique (SMOTE). Models underwent 100-time repeat nested cross-validation. Overall performances of our classification models were modest, and TA based on T1-weighted IP/OP/WO images provided better performance than those based on ADC and T2* maps. The most favorable result was observed in the T1-weighted WO image using RF classifier and the combination model was derived from all T1-weighted images using SVM classifier with rbf kernel. Among the selected TFs, total energy and energy had weak correlations with eGFR.

摘要

我们评估了一个多类分类模型,以使用磁共振成像(MRI)纹理分析(TA)预测慢性肾脏病(CKD)患者的估算肾小球滤过率(eGFR)组。我们确定了 166 名接受 MRI 检查的 CKD 患者,MRI 包括基于 Dixon 的 T1 加权同相位(IP)/反相位(OP)/仅水(WO)图像、表观扩散系数(ADC)图和 T2图。患者根据 eGFR 边界值 30 和 60 mL/min/1.73 m 分为严重、中度和对照组。在提取 93 个纹理特征(TFs)后,使用观察者间可重复性分析和顺序特征选择(SFS)算法进行降维。使用线性判别分析(LDA);支持向量机(SVM)具有线性、rbf 和 sigmoid 核;决策树(DT)和随机森林(RF)分类器,具有合成少数过采样技术(SMOTE)创建模型。模型进行了 100 次重复嵌套交叉验证。我们的分类模型整体性能一般,基于 T1 加权 IP/OP/WO 图像的 TA 提供的性能优于基于 ADC 和 T2图的性能。使用 RF 分类器从 T1 加权 WO 图像中观察到最有利的结果,并且使用 SVM 分类器与 rbf 核从所有 T1 加权图像中得出组合模型。在所选择的 TFs 中,总能量和能量与 eGFR 呈弱相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9c/9427930/2ce38f43870e/41598_2022_19009_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验